Cho số phức \(z=a+bi\), với \(a,\,\,b\) là các số thực thỏa mãn \(a+bi+2i\left( a-bi \right)+4=i\), với i là đơn vị ảo. Tìm mô đun của \(\omega =1+z+{{z}^{2}}\).
A. \(\left| \omega \right|=\sqrt{229}\).
B. \(\left| \omega \right|=\sqrt{13}\)
C. \(\left| \omega \right|=229\).
D. \(\left| \omega \right|=13\).
Lời giải của giáo viên
Ta có \(a + bi + 2i\left( {a - bi} \right) + 4 = i \Leftrightarrow \left\{ \begin{array}{l} a + 2b = - 4\\ b + 2a = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = 2\\ b = - 3 \end{array} \right.\).
Suy ra z=2-3i
Do đó \(\omega =1+z+{{z}^{2}}=-2-15i\).
Vậy \(\left| \omega \right|=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -15 \right)}^{2}}}=\sqrt{229}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình trụ có bán kính đáy \(r=5\left( \text{cm} \right)\) và khoảng cách giữa hai đáy bằng \(7\left( \text{cm} \right)\). Diện tích xung quanh của hình trụ là
Giải phương trình \({{\log }_{\frac{1}{2}}}\left( x-1 \right)=-2\).
Trong không gian \(Oxyz\), cho \(A\left( 1;1;-3 \right), B\left( 3;-1;1 \right)\). Gọi M là trung điểm của AB, đoạn OM có độ dài bằng
Gieo một con xúc sắc cân đối và đồng chất hai lần. Xác suất để cả hai lần xuất hiện mặt sáu chấm là
Cho số phức \(\overline{z}=3-2i\). Tìm phần thực và phần ảo của \(z\).
Trong hệ tọa độ \(Oxy\), parabol \(y=\frac{{{x}^{2}}}{2}\) chia đường tròn tâm \(O\) (\(O\) là gốc tọa độ) bán kính \(r=2\sqrt{2}\) thành 2 phần, diện tích phần nhỏ bằng:
Cho khối lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có \(C{C}'=2a\), đáy \(ABC\) là tam giác vuông cân tại \(B\) và \(AC=a\sqrt{2}\). Tính thể tích \(V\) của khối lăng trụ đã cho.
Cho khối lăng trụ \(ABC.{A}'{B}'{C}'\) có thể tích bằng 1. Gọi M,N lần lượt là trung điểm của các đoạn thẳng \(A{A}'\) và \(B{B}'\). Đường thẳng CM cắt đường thẳng \({C}'{A}'\) tại P, đường thẳng CN cắt đường thẳng \({C}'{B}'\) tại Q. Thể tích khối đa diện lồi \({A}'MP{B}'NQ\) bằng
Đường cong trong hình bên là đồ thị của một trong bốn hàm số nào sau đây?
Đổi biến \(x=4\sin t\) của tích phân \(I=\int\limits_{0}^{\sqrt{8}}{\sqrt{16-{{x}^{2}}}}dx\) ta được:
Trong không gian với hệ trục Oxyz , cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=12\) và mặt phẳng \(\left( P \right):x-2y+2z+11=0\) . Xét điểm M di động trên \(\left( P \right)\) , các điểm A,B,C phân biệt di động trên \(\left( S \right)\) sao cho AM,BM,CM là các tiếp tuyến của \(\left( S \right)\) . Mặt phẳng \(\left( ABC \right)\) luôn đi qua điểm cố định nào dưới đây ?
Cho M là tập hợp các số phức \(z\) thỏa mãn \(\left| 2z-i \right|=\left| 2+iz \right|\). Gọi \({{z}_{1}},{{z}_{2}}\) là hai số phức thuộc tập hợp M sao cho \(\left| {{z}_{1}}-{{z}_{2}} \right|=1\). Tính giá trị của biểu thức \(P=\left| {{z}_{1}}+{{z}_{2}} \right|\).
Cho hàm số bậc bốn \(y=f\left( x \right)\) có đồ thị \(\left( C \right)\) như hình vẽ bên. Biết hàm số \(y=f\left( x \right)\) đạt cực trị tại các điểm \({{x}_{1}},{{x}_{2}},{{x}_{3}}\) thỏa mãn \({{x}_{3}}={{x}_{1}}+2\), \(f\left( {{x}_{1}} \right)+f\left( {{x}_{3}} \right)+\frac{2}{3}f\left( {{x}_{2}} \right)=0\) và \(\left( C \right)\) nhận đường thẳng \(d:x={{x}_{2}}\) làm trục đối xứng. Gọi \({{S}_{1}},{{S}_{2}},{{S}_{3}},{{S}_{4}}\) là diện tích của các miền hình phẳng được đánh dấu như hình bên. Tỉ số \(\frac{{{S}_{1}}+{{S}_{2}}}{{{S}_{3}}+{{S}_{4}}}\)gần kết quả nào nhất
Có bao nhiêu số tự nhiên a sao cho tồn tại số thực \(x\) thoả\({{2021}^{{{x}^{3}}-{{a}^{3\log \left( x+1 \right)}}}}\left( {{x}^{3}}+2020 \right)={{a}^{3\log \left( x+1 \right)}}+2020\)
Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)={{\left( x+1 \right)}^{2}}{{\left( x-1 \right)}^{3}}\left( 2-x \right).\) Hàm số \(f\left( x \right)\) đồng biến trên khoảng nào, trong các khoảng dưới đây?