Lời giải của giáo viên
Gọi \(z=x+yi\left( x,y\in \mathbb{R} \right)\) và \(M\left( x,y \right)\) là điểm biểu diễn của số phức z trong mặt phẳng phức. Xét các điểm \({{F}_{1}}\left( -8;0 \right),{{F}_{2}}\left( 8;0 \right).\)
Ta có: \(M{{F}_{1}}=\sqrt{{{\left( -8-x \right)}^{2}}+{{\left( -y \right)}^{2}}}=\sqrt{{{\left( x+8 \right)}^{2}}+{{y}^{2}}}=\left| z+8 \right|.\)
\(M{{F}_{2}}=\sqrt{{{\left( 8-x \right)}^{2}}+{{\left( -y \right)}^{2}}}=\sqrt{{{\left( x-8 \right)}^{2}}+{{y}^{2}}}=\left| z-8 \right|.\)
\(\Rightarrow \left| z-8 \right|+\left| z+8 \right|=20\Leftrightarrow \sqrt{{{\left( x+8 \right)}^{2}}+{{y}^{2}}}+\sqrt{{{\left( x-8 \right)}^{2}}+{{y}^{2}}}=20\Leftrightarrow M{{F}_{1}}+M{{F}_{2}}=20.\)
Do \(M{{F}_{1}}+M{{F}_{2}}\ge {{F}_{1}}{{F}_{2}}\Rightarrow \) Tập hợp điểm M là một elip có dạng \(\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\)
\( \Rightarrow \left\{ \begin{array}{l} 2a = 20\\ c = 8 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {a^2} = 100\\ {b^2} = {a^2} - {c^2} = 36 \end{array} \right. \Rightarrow \frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1 \Rightarrow \left\{ \begin{array}{l} \max \left| z \right| = 10\\ \min \left| z \right| = 6 \end{array} \right. \Rightarrow m + n = 16.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Số phức nào sau đây là số đối của số phức z, biết z có phần thực dương thoả mãn \(\left| z \right|=2\) và biểu diễn số phức z thuộc đường thẳng \(y-\sqrt{3}x=0.\)
Cho hàm số y = f(x) có đạo hàm \({f}'\left( x \right)=\left( x-1 \right){{\left( x+1 \right)}^{6}}{{\left( x-2 \right)}^{5}}.\) Hàm số có bao nhiêu điểm cực trị?
Cho hàm số \(y=\sqrt{x+\frac{1}{x}}\). Giá trị nhỏ nhất của hàm số trên \((0;\,+\infty )\) bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC = 2a. Mặt bên SBC là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABC là
Trong không gian với hệ trục toạ độ Oxyz, cho đường thẳng \(\Delta :\frac{x}{2}=\frac{y-1}{-1}=\frac{z}{2}\) và đường thẳng \(d:\frac{x+2}{-1}=\frac{y-1}{2}=\frac{z+1}{2}.\) Góc giữa d và \(\Delta \) bằng
Cho hàm số y = f(x) có bảng biến thiên
Khẳng định nào sau đây là đúng?
Nếu \({{\log }_{8}}a+{{\log }_{4}}{{b}^{2}}=5\) và \({{\log }_{4}}{{a}^{2}}+{{\log }_{8}}b=7\) thì giá trị của ab là
Tìm hệ số của đơn thức \({{a}^{3}}{{b}^{2}}\) trong khai triển nhị thức \({{\left( a+2b \right)}^{5}}.\)
Cho hàm số y = f(x) liên tục trên đoạn \(\left[ \frac{1}{2};2 \right]\) và thoả mãn \(f\left( x \right)+2f\left( \frac{1}{x} \right)=3x;\forall x\in {{\mathbb{R}}^{*}}.\) Tính tích phân \(\int\limits_{\frac{1}{2}}^{2}{\frac{f\left( x \right)}{x}dx}.\)
Trong không gian với hệ toạ độ Oxyz, cho điểm \(A\left( 1;-2;1 \right)\) và mặt phẳng (P): x + 2y + 2z – 1 = 0. Khoảng cách từ A đến mặt phẳng (P) bằng
Tìm các số \(x,y\in \mathbb{R}\) thoả mãn \(\left( 1+2y \right)i=\left( 2i-1 \right)x+1+i.\)
Đồ thị hàm số nào dưới đây nhận đường thẳng x = 1 là đường tiệm cận đứng?
Cho hàm số \(y=\frac{ax+b}{cx+d}\) có đồ thị như hình vẽ. Mệnh đề nào sau đây là mệnh đề đúng?
Nguyên hàm của hàm số \(f\left( x \right)={{3}^{x}}+{{x}^{2}}\) là
Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng \(\left( P \right):2\left( {{m}^{2}}+m+2 \right)x+\left( {{m}^{2}}-1 \right)y+\left( m+2 \right)z+{{m}^{2}}+m+1=0\) luôn chứa đường thẳng \(\Delta \) cố định khi m thay đổi. Khoảng cách từ gốc toạ độ đến \(\Delta \) là