Cho tập hợp \(A = \left\{ {1;2;3;4;5;6} \right\}\). Gọi B là tập hợp các số tự nhiên gồm 4 chữ số đôi một khác nhau được lập từ A. Chọn thứ tự 2 số thuộc tập hợp B. Tính xác suất để trong 2 số vừa chọn có đúng một số có mặt chữ số 3.
A. \(\dfrac{{80}}{{359}}\)
B. \(\dfrac{{159}}{{360}}\)
C. \(\dfrac{{160}}{{359}}\)
D. \(\dfrac{{161}}{{360}}\)
Lời giải của giáo viên
Ta có \(n\left( B \right) = A_6^4 = 360\).
Chọn 2 số thuộc B \( \Rightarrow n\left( \Omega \right) = C_{360}^2 = 64620\).
Số có mặt chữ số 3 là \(A_5^3 = 4.60 = 240\) số.
Gọi A là biến cố : " trong 2 số vừa chọn có đúng một số có mặt chữ số 3" \( \Rightarrow n\left( A \right) = 240.120 = 28800\).
Vậy \(P\left( A \right) = \dfrac{{28800}}{{64620}} = \dfrac{{160}}{{359}}\).
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hai phương trình \({x^2} + 7x + 3 - \ln \left( {x + 4} \right) = 0\,\,\,\left( 1 \right)\) và \({x^2} - 11x + 21 - \ln \left( {6 - x} \right) = 0\,\,\left( 2 \right)\). Đặt T là tổng các nghiệm phân biệt của hai phương trình đã cho, ta có
Tìm các giá trị của tham số m \(\left( {m \in R} \right)\) để phương trình \({x^2} + \dfrac{1}{{{x^2}}} - \left( {{m^2} + m + 2} \right)\left( {x + \dfrac{1}{x}} \right) + {m^3} + 2m + 2 = 0\) có nghiệm thực:
Trong mặt phẳng \(Oxy\) cho tam giác \(ABC\) có đỉnh \(A\left( {5;\;5} \right),\) trực tâm \(H\left( { - 1;\;13} \right),\) đường tròn ngoại tiếp tam giác \(ABC\) có phương trình \({x^2} + {y^2} = 50.\) Biết tọa độ đỉnh \(C\) là \(C\left( {a;\;b} \right)\) với \(a < 0.\) Tổng \(a + b\) bằng:
Có tất cả bao nhiêu giá trị nguyên của m để hàm số \(y = \dfrac{{x + 3}}{{x + 4m}}\) nghịch biến trên khoảng \(\left( {2; + \infty } \right)?\)
Cho phương trình: \(3{\log _{27}}\left[ {2{x^2} - \left( {m + 3} \right)x + 1 - m} \right] + {\log _{\frac{1}{3}}}\left( {{x^2} - x + 1 - 3m} \right) = 0\). Số các giá trị nguyên của m sao cho phương trình đã cho có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn \(\left| {{x_1} - {x_2}} \right| < 15\) là:
Có tất cả bao nhiêu giá trị nguyên của m trên miền \(\left[ { - 10;10} \right]\) để hàm số \(y = {x^4} - 2\left( {2m + 1} \right){x^2} + 7\) có ba điểm cực trị?
Từ các chữ số \(1;\;2;\;3;\;4;\;5;\;6;\;7;\;8;\;9\) có thể lập được tất cả bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau?
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(R.\) Biết \(f\left( 0 \right) = 0\) và đồ thị hàm số \(y = f'\left( x \right)\) được cho như hình vẽ bên. Phương trình \(\left| {f\left( {\left| x \right|} \right)} \right| = m,\) với \(m\) là tham số có nhiều nhất bao nhiêu nghiệm?
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình \(4f\left( x \right) - 5 = 0\) là:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào sau đây?
Cho khối lăng trụ đều \(ABC.A'B'C'\) có cạnh đáy bằng \(a.\) Khoảng cách từ điểm \(A'\) đến mặt phẳng \(\left( {AB'C'} \right)\) bằng \(\dfrac{{2a\sqrt 3 }}{{\sqrt {19} }}.\) Thể tích khối lăng trụ đã cho là:
Cho các số thực a,b thay đổi, thỏa mãn \(a > \dfrac{1}{3},\,\,b > 1\). Khi biểu thức \(P = {\log _{3a}}b + {\log _b}\left( {{a^4} - 9{a^2} + 81} \right)\) đạt giá trị nhỏ nhất thì tổng \(a + b\) bằng:
Cho a là số thực dương, \(a \ne 1\). Biết bất phương trình \({\log _a}x \le 3x - 3\) nghiệm đúng với mọi \(x > 0\). Số a thuộc tập hợp nào sau đây ?
Biết rằng tập nghiệm của bất phương trình \(\sqrt {2x + 4} - 2\sqrt {2 - x} \ge \dfrac{{6x - 4}}{{5\sqrt {{x^2} + 1} }}\) là \(\left[ {a;b} \right]\). Khi đó giá trị của biểu thức \(P = 3a - 2b\) bằng:
Số nghiệm của phương trình \(3{\log _3}\left( {2x - 1} \right) - {\log _{\frac{1}{3}}}{\left( {x - 5} \right)^3} = 3\) là: