Lời giải của giáo viên
Đáp án C
* Số phần tử của không gian mẫu là \(n\left( \Omega \right)=C_{21}^{2}=210\)
* Gọi biến cố A=“Chọn được hai số có tổng là một số chẵn”, trong 21 số nguyên dương đầu tiên có 11 số lẻ và 10 số chẵn, để hai số chọn được có tổng là một số chẵn điều kiện là cả hai số cùng chẵn hoặc cùng lẻ \(\Rightarrow\) Số phần tử của biến cố A là: \(n\left( A \right)=C_{10}^{2}+C_{11}^{2}=100\)
* Xác suất của biến cố A là: \(P\left( A \right)=\frac{n\left( A \right)}{n\left( \Omega \right)}=\frac{10}{21}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi \({{z}_{1}},{{z}_{2}}\) là hai nghiệm phức của phương trình \({{z}^{2}}-4z+5=0\). Gái trị của \(z_{1}^{2}+z_{2}^{2}\) bằng
Cho hai hàm số \(y=\frac{x-1}{x}+\frac{x}{x+1}+\frac{x+1}{x+2}+\frac{x+2}{x+3}\) và \(y=\left| x+2 \right|-x-m\) (m là tham số thực) có đồ thị lần lượt là \(\left( {{C}_{1}} \right)\) và \(\left( {{C}_{2}} \right)\). Tập hợp tất cả các giá trị của m để \(\left( {{C}_{1}} \right)\) và \(\left( {{C}_{2}} \right)\) cắt nhau tại đúng 4 điểm phân biệt là
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+2}{1}=\frac{y-1}{-3}=\frac{z-3}{2}\). Vectơ nào dưới đây là một vectơ chỉ phương của d?
Trong không gian Oxyz, hình chiếu vuông góc của điểm \(M\left( 2;1;-1 \right)\) trên trục Oy có tọa độ là
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Cho phương trình \(\left( 2\log _{3}^{2}x-{{\log }_{3}}x-1 \right)\sqrt{{{5}^{x}}-m}=0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (minh họa như hình vẽ bên). Khoảng cách từ C đến mặt phẳng (SBD) bằng
Giá trị lớn nhất của hàm số \(f\left( x \right)={{x}^{3}}-3x\) trên đoạn \(\left[ -3\,;\,3 \right]\) bằng
Cho hàm số \(f\left( x \right)\), bảng xét dấu của \({f}'\left( x \right)\) như sau:
Hàm số \(y=f\left( 3-2x \right)\) đồng biến trên khoảng nào dưới đây?
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
Cho số phức z thỏa \((2+i)z-4(\overline{z}-i)=-8+19i\). Môđun của z bằng
Họ tất cả các nguyên hàm của hàm số \(f\left( x \right)=2x+3\) là
Cho hình trụ có chiều cao bằng \(3\sqrt{2}\). Cắt hình trụ bởi mặt phẳng song song với trục và cách trục một khoảng bằng 1, thiết diện thu được có diện tích bằng \(12\sqrt{2}\). Diện tích xung quanh của hình trụ đã cho bằng
Thể tích của khối nón có chiều cao h và bán kính đáy r là