Có 5 bạn học sinh nam và 5 bạn học sinh nữ trong đó có một bạn nữ tên Tự và một bạn nam tên Trọng. Xếp ngẫu nhiên 10 bạn vào một dãy 10 ghế sao cho mỗi ghế có đúng một người ngồi. Tính xác suất để không có hai học sinh nam vào ngồi kề nhau và bạn Từ ngồi kề với bạn Trọng.
A. \(\frac{1}{{252}}\)
B. \(\frac{1}{{63}}\)
C. \(\frac{1}{{192}}\)
D. \(\frac{1}{{126}}\)
Lời giải của giáo viên
Kí hiệu Nam: và Nữ: . Ta có
Có 2 trường hợp Nam, nữ ken kẽ nhau và 4 trường hợp hai bạn Nữ ngồi cạnh nhau.
Trường hợp 1. Nam nữ ngồi xen kẽ nhau gồm:
Nam phía trước:
Nữ phía trước:
Trường hợp 2. Hai bạn nữ ngồi cạnh nhau: Hoặc
. Tương tự ta có thêm 2 trường hợp nữa. Các bước xếp như sau:
B1: Xếp 5 bạn nam. B2: Xếp cặp Tự - Trọng. B3: Xếp các bạn nữ còn lại. Khi đó số kết quả xếp cho 2 trường hợp trên như sau:
- Nam, Nữ xen kẽ nhau có: \(2.9.4!.4!\)
- Hai bạn nữ ngồi cạnh nhau có: \(4.8.41.4!\)
Vậy \(P = \frac{{50.4!.4!}}{{10!}} = \frac{1}{{126}}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số có đồ thị như hình vẽ. Giá trị cực đại của hàm số bằng
Cho hàm số \(y=f(x)\) liên tục trên [-1;3] và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số đã cho trên [-1;3]. Giá trị M + m bằng
Cho khối nón có độ dài đường sinh bằng 2a, góc giữa đường sinh và đáy bằng 60°. Thể tích của khối nón đã cho là
Cho hàm số \(f(x)\) có đồ thị của hàm số \(y=f'(x)\) như hình vẽ
Hàm số \(y = f\left( {2x - 1} \right) + \frac{{{x^3}}}{3} + {x^2} - 2x\) nghịch biến trên khoảng nào sau đây
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + 2y + 2z - 10 = 0\). Phương trình mặt phẳng (Q) song song với (P), khoảng cách giữa hai mặt phẳng (P) và (Q) bằng \(\frac{7}{3}\) là
Họ nguyên hàm của hàm số \(f\left( x \right) = \sin x + x\ln x\) là
Trong không gian Oxyz, cho \(A\left( {1;0;0} \right),B\left( {0;2;0} \right),C\left( {0;0;1} \right)\). Trực tâm của tam giác ABC có tọa độ là
Tính thể tích của khối tứ diện đều có tất cả các cạnh bằng a.
Đặt \({\log _5}3 = a\), khi đó \({\log _{81}}75\) bằng
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình vẽ.
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Tìm tập nghiệm của phương trình \({\log _3}\left( {2{x^2} + x + 3} \right) = 1\).
Trong không gian Oxyz, cho A(0;1;2), B(0;1;0), C(3;1;1) và mặt phẳng \(\left( Q \right):x + y + z - 5 = 0\). Xét điểm M thay đổi thuộc (Q). Giá trị nhỏ nhất của biểu thức \(M{A^2} + M{B^2} + M{C^2}\) bằng
Thể tích lớn nhất của khối trụ nội tiếp hình cầu có bán kính R bằng
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?