Lời giải của giáo viên
Ta có \(y' = 3{x^2} - 4x - 2m + 5\)
Hàm số đồng biến trên khoảng \(\left( {0{\rm{; + }}\infty } \right) \Leftrightarrow y' \ge 0,{\rm{ }}\forall x \in {\rm{ }}\left( {{\rm{0; + }}\infty } \right)\)
\( \Leftrightarrow 3{x^2} - 4x - 2m + 5 \ge 0{\rm{ ,}}\forall x \in \left( {{\rm{0; + }}\infty } \right) \Leftrightarrow 3{x^2} - 4x \ge 2m - 5{\rm{ ,}}\forall x \in \left( {{\rm{0; + }}\infty } \right)\)
Xét hàm số \(f\left( x \right) = 3{x^2} - 4x\) trên \(\left( {0{\rm{; + }}\infty } \right)\), ta có \(f'\left( x \right) = 6x - 4 = 0 \Leftrightarrow x = \frac{2}{3}\)
Vẽ bảng biến thiến
Từ bảng trên suy ra \(3{x^2} - 4x \ge 2m - 5{\rm{ ,}}\forall x \in {\rm{ }}\left( {{\rm{0; + }}\infty } \right)\) \( \Leftrightarrow 2m - 5 \le - \frac{4}{3} \Leftrightarrow m \le \frac{{11}}{6}\).
Do m nguyên và \(m \in \left[ { - 2018{\rm{ ; 2019}}} \right] \Rightarrow m \in \left\{ { - 2018; - 2017; - 2016,....,0,1} \right\}\)
Vậy có 2020 giá trị m thỏa mãn đề bài.
CÂU HỎI CÙNG CHỦ ĐỀ
Bất phương trình \({3^{2x + 1}} - {7.3^x} + 2 > 0\) có nghiệm là
Hàm số \(y = {\log _2}\left( {2x - 3} \right)\) có tập xác định là
Có 8 học sinh nam, 5 học sinh nữ và 1 thầy giáo được sắp xếp ngẫu nhiên đứng thành một vòng tròn. Tính xác suất để thầy giáo đứng giữa 2 học sinh nam.
Số giao điểm của đồ thị hàm số \(y = {x^4} - 5{x^2} + 4\) với trục hoành là:
Khối chóp S.ABCD có đáy là hình thoi và \(SA \bot (ABCD)\) có thể tích bằng
Tìm tập nghiệm S của bất phương trình \({\log _{\frac{1}{2}}}\left( {x + 1} \right) < {\log _{\frac{1}{2}}}\left( {2x - 1} \right)\).
Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm A(-3;1;2), B(1;-1;0) là
Cho trước 5 chiếc ghế xếp thành một hàng ngang. Số cách xếp ba bạn A, B, C vào 5 chiếc ghế đó sao cho mỗi bạn ngồi một ghế là
Cho \(I = \int\limits_1^2 {2x\sqrt {{x^2} - 1} } {\rm{d}}x\) và \(u = {x^2} - 1\). Mệnh đề nào dưới đây sai ?
Với a, b, c là các số thực dương tùy ý khác 1 và \({\log _a}c = x,{\log _b}c = y\). Khi đó giá trị của \({\log _c}\left( {ab} \right)\) là
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3, trục hoành và hai đường thẳng x = -1; x = 2 là
Trong không gian Oxyz cho điểm A(-2;1;3). Hình chiếu vuông góc của A lên trục Ox có tọa độ là:
Cho hàm số f(x) liên tục trên [-1;3] và có đồ thị như hình vẽ bên. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên [-1;3]. Tính M - m.
Trong không gian, cho tam giác đều ABC cạnh bằng a. Tính thể tích khối nón nhận được khi quay tam giác ABC quanh một đường cao của nó.