Có bao nhiêu giá trị nguyên của tham số \(m\in \left[ -20;20 \right]\) để tồn tại các số thực x, y thỏa mãn đồng thời \({{e}^{3x+5y-10}}-{{e}^{x+3y-9}}=1-2x-2y\) và \(\log _{5}^{2}\left( 3x+2y+4 \right)-\left( m+6 \right){{\log }_{2}}\left( x+5 \right)+{{m}^{2}}+9=0\).
A. 22
B. 23
C. 19
D. 31
Lời giải của giáo viên
Ta có \({{e}^{3x+5y-10}}-{{e}^{x+3y-9}}=1-2x-2y\)
\(\Leftrightarrow {{e}^{3x+5y-10}}-{{e}^{x+3y-9}}=\left( x+3y-9 \right)-\left( 3x+5y-10 \right)\)
\(\Leftrightarrow {{e}^{3x+5y-10}}+3x+5y-10={{e}^{x+3y-9}}+x+3y-9\)
Xét hàm số \(f\left( t \right)={{e}^{t}}+t,\text{ }t\in \mathbb{R}\).
Ta có: \({f}'\left( t \right)={{e}^{t}}+1>0,\text{ }\forall t\in \mathbb{R}.\) Suy ra hàm số \(f\left( t \right)\) luôn đồng biến trên \(\mathbb{R}\).
\(\Rightarrow 3x+5y-10=x+3y-9\Leftrightarrow 2y=1-2x\).
Thay vào phương trình thứ 2, ta được
\(\begin{align} & \log _{5}^{2}\left( 3x+2y+4 \right)-\left( m+6 \right){{\log }_{2}}\left( x+5 \right)+{{m}^{2}}+9=0 \\ & \Leftrightarrow \log _{5}^{2}\left( x+5 \right)-\left( m+6 \right){{\log }_{2}}\left( x+5 \right)+{{m}^{2}}+9=0 \\ & \Leftrightarrow \,\log _{5}^{2}\left( x+5 \right)-\left( m+6 \right){{\log }_{2}}5.{{\log }_{5}}\left( x+5 \right)+{{m}^{2}}+9=0\,\left( 1 \right). \\ \end{align}\)
Đặt \({{\log }_{5}}\left( x+5 \right)=t\text{ }\left( t\in \mathbb{R},\text{ }x>-5 \right)\). Khi đó phương trình (1) trở thành
\({{t}^{2}}-{{\log }_{2}}5.\left( m+6 \right)t+{{m}^{2}}+9=0\) (2).
Tồn tại x, y thỏa mãn yêu cầu bài toán khi và chỉ khi phương trình (2) có nghiệm nên \(\Delta ={{\left( m+6 \right)}^{2}}.\log _{2}^{2}5-4\left( {{m}^{2}}+9 \right)\ge 0\Leftrightarrow \left( \log _{2}^{2}5-4 \right){{m}^{2}}+12.\log _{2}^{2}5.m-36\left( 1-\log _{2}^{2}5 \right)\ge 0\).
\( \Leftrightarrow \left[ \begin{array}{l} m \le {m_1}\\ m \ge {m_2} \end{array} \right.\) với \({{m}_{1}}\approx -43.91\) và \({{m}_{2}}\approx -2.58\)
Do \(m\in \left[ -20;20 \right]\) và \(m\in \mathbb{Z}\) nên \(m\in \left\{ -2;-1;0;...;19;20 \right\}\).
Vậy có 23 giá trị của m thỏa mãn yêu cầu bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=h\left( x \right)\) có bảng biến thiên sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Gieo một con súc sắc ba lần. Xác suất để được mặt số hai xuất hiện cả ba lần là.
Gọi \(\left( H \right)\) là hình phẳng giới hạn bởi đồ thị hàm số: \(y={{x}^{2}}-4x+4\), trục tung và trục hoành. Xác định k để đường thẳng \(\left( d \right)\) đi qua điểm \(A\left( 0;4 \right)\) có hệ số góc k chia \(\left( H \right)\) thành hai phần có diện tích bằng nhau.
Tìm các khoảng đồng biến của hàm số \(y={{x}^{3}}+3{{x}^{2}}+1\).
Cho hình chóp S.ABC có SA=SB=CB=CA, hình chiếu vuông góc của S lên mặt phẳng \(\left( ABC \right)\) trùng với trung điểm I của cạnh AB. Góc giữa đường thẳng SC và mặt phẳng \(\left( ABC \right)\) bằng.
Trong không gian với hệ tọa độ Oxyz, viết phương trình tham số của đường thẳng \(\Delta :\frac{x-4}{1}=\frac{y+3}{2}=\frac{z-2}{-1}.\)
Nguyên hàm của hàm số \(f\left( x \right)=\cos 6x\) là
Cho đồ thị hàm số y = f(x) có dạng hình vẽ bên. Tính tổng tất cả giá trị nguyên của m để hàm số y = |f(x) -2m + 5| có 7 điểm cực trị.
Tổng bình phương các nghiệm của phương trình \({\log _{\frac{1}{2}}}\left( {{x^2} - 5x + 7} \right) = 0\) bằng
Cho \(\int\limits_{0}^{\frac{\pi }{4}}{\frac{\sqrt{2+3\tan x}}{1+\cos 2x}dx=a\sqrt{5}+b\sqrt{2},\,\,}\) với \(a,\,\,b\in \mathbb{R}.\) Tính giá trị biểu thức A=a+b.
Cho hai số phức \({{z}_{1}}=3-i\) và \({{z}_{2}}=-1+i\). Phần ảo của số phức \({{z}_{1}}{{z}_{2}}\) bằng
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{1-x}{-x+2}\) có phương trình lần lượt là
Một khối lăng trụ có chiều cao bằng 2a và diện tích đáy bằng \(2{{a}^{2}}\). Tính thể tích khối lăng trụ
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu (S) có tâm \(I(\left( 1;-2;3 \right)\) và \(\left( S \right)\) đi qua điểm \(A\left( 3;0;2 \right)\).