Lời giải của giáo viên
Đặt \(\cos x=t,t\in \left[ -1;1 \right]\)
PTTT: \(4{{t}^{4}}-8{{t}^{2}}+1=m\) (1)
Mỗi giá trị mỗi giá trị \(t\in \left( -1;0 \right]\) cho ta 2 giá trị \(x\in \left[ \frac{\pi }{2};\frac{3\pi }{2} \right]\backslash \left\{ \pi \right\}\), với t=-1 cho ta 1 giá trị \(x=\pi \) và \(t\in \left( 0;1 \right]\) cho ta 1 giá trị
Xét hàm số f(t) = 4t4 -8t2 + 1 có BBT như sau:
Để PT đã cho có 3 nghiệm thì đường thẳng y = m phải cắt đồ thị hàm số f(t) tại một điểm có hoành độ thuộc (-1;0] và một điểm có hoành độ thuộc (0;1]
Dựa vào BBT suy ra - 3 < m < 1.
Có 3 số nguyên của m thỏa mãn đó la -2;-1;0.
CÂU HỎI CÙNG CHỦ ĐỀ
Gía trị nguyên dương bé nhất của tham số m để đường thẳng y = mx - 9 cắt đồ thị hàm số \(y = {x^2} - x\) tại hai điểm phân biệt là
Xác định tham số thực m để phương trình \({{x}^{2}}+{{y}^{2}}-4x+4y+8-m=0\) có nghiệm duy nhất \(\left( x;y \right)\) thỏa mãn bất phương trình \(\log _{{{x}^{2}}+{{y}^{2}}+2}^{{}}\left( 2x+2y+4 \right)\ge 1\).
Tính thể tích của khối nón tròn xoay sinh ra khi cho tam giác đều ABC cạnh a quay quanh trục đối xứng của nó.
Cho \({\log _2}3 = a;{\log _2}5 = b.\) Tính \({\log _3}15\) theo a và b.
Trong không gian Oxyz, một véc tơ chỉ phương của đường thẳng có phương trình tham số \(\left\{ {\begin{array}{*{20}{c}} {x = 1 - 2t}\\ {y = 3}\\ {z = 5 + t} \end{array}} \right.\) là
Trong không gian Oxyz, đường thẳng đi qua điểm \(M\left( {2; - 3;1} \right)\) và vuông góc với mặt phẳng 3x - y + 4z - 2 = 0 có phương trình là
Tập nghiệm của bất phương trình \({\ln ^2}x - 3\ln x + 2 \le 0\) là
Cho hình nón có chiều cao bằng 2a. Thiết diện đi qua đỉnh của hình nón cách tâm đường tròn đáy của hình nón một khoảng bằng a là một tam giác đều. Tính thể tích của khối nón giới hạn bởi hình nón đã cho.
Nguyên hàm của hàm số \(f\left( x \right) = {2^x}\) bằng
Khối hộp chữ nhật có độ dài ba kích thước lần lượt là 3(cm), 7(cm), 4(cm). Thể tích khối hộp đó bằng
Trong không gian Oxyz, mặt cầu tâm \(I\left( 5;-1;3 \right)\) đi qua điểm \(A\left( 2;4;7 \right)\) có phương trình là
Cho hình chóp S.ABCD có đáy là hình vuông tâm O, cạnh a. \(SA\bot \left( ABCD \right)\) và \(SA=a\sqrt{7}.\) Tính khoảng cách giữa hai đường thẳng SB và AC.
Cho \(\int\limits_{0}^{1}{f\left( x \right)dx}=-5\) và \(\int\limits_{0}^{1}{g\left( x \right)dx=3.}\)Tính \(I=\int\limits_{0}^{1}{\left[ 2f\left( x \right)+3g\left( x \right) \right]}dx.\)