Lời giải của giáo viên
Xét \({{27}^{3{{x}^{2}}+xy}} - (1+xy){{27}^{12x}}\)
Áp dụng bất đẳng thức: \({a^x} \geqslant x(a - 1) + 1\), ta có
\(f(x) \geqslant 26(3{x^2} + xy - 12x) + 1 - (1 + xy) = 78{x^2} + (25y - 312)x > 0,\forall y \geqslant 13\)
Do đó y ≤ 12
\(\begin{gathered}
y = 0 = > {27^{3{x^2} - 12}} = 1 < = > 3{x^2} - 12 = 0 < = > \left[ \begin{gathered}
x = 0 \hfill \\
x = 4 \hfill \\
\end{gathered} \right.(loai) \hfill \\
y \leqslant - 3 = > xy < - 1 = > VP < 0(loai) \hfill \\
\end{gathered} \)
y=-1; y = -2 (thỏa mãn)
Xét y > 0 có f(4) = 274y - (1 + 4y) ≥ 0, \(\forall \) y > 0 và \(f\left( {\frac{1}{3}} \right) = f(x) = {3^{y - 11}} - \frac{y}{3} - 1 < 0,\forall y \in {\text{\{ }}1;2;...;12\} \)
Do đó pt f(x) = 0 có nghiệm \(x \in \left( {\frac{1}{3};4} \right),\forall y \in {\text{\{ }}1;2;...;12\} \)
Vậy \(y \in {\text{\{ - 2; - 1;0;}}1;2;...;12\} \)
Chọn B
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại C, AC = 3a và SA vuông gốc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SAC) bằng
Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như sau:
Số điểm cực trị của hàm số đã cho là:
Có bao nhiêu số nguyên x thỏa mãn \(\left( {{3}^{{{x}^{2}}}}-{{9}^{x}} \right)\left[ {{\log }_{2}}(x+30)-5 \right]\le 0\)?
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{y}{1}=\frac{z-1}{2}\) và mặt phẳng (P): 2x + y – z + 3 = 0. Hình chiếu vuông góc của d lên (P) là đường thẳng có phương trình:
Với n là số nguyên dương bất kì, n ≥ 5, công thức nào dưới đây đúng
Cho hai số phức z = 5 + 2i và w = 1 - 4i. Số phức z + w bằng
Nếu \(\int\limits_{0}^{3}{f(x)dx=3}\) thì \(\int\limits_{0}^{3}{2f(x)dx}\) bằng
\(f(x) = \left\{ \begin{array}{l} 2x - 1\;\;\;\;\;\;\;khi\;\;\;\;x \ge 1\\ 3{x^2} - 2\;\;\;\;khi\;\;\;\;x < 1 \end{array} \right.\). Giả sử F là nguyên hàm của f trên R thỏa mãn F(0)=2. Giá trị của F(-1) + 2F(2) bằng
Cho khối chóp có diện tích đáy B = 3a2 và chiều cao h = a. Thể tích của khối chóp đã cho bằng
Xét các số phức z, w thỏa mãn \(\left| z \right|=1\) và \(\left| \text{w} \right|=2\). Khi \(\left| z+i\overline{\text{w}}+6-8i \right|\) đạt giá trị nhỏ nhất, \(\left| z-\text{w} \right|\) bằng