Lời giải của giáo viên
Đặt \(z=x+yi\,\,(x,y\in \mathbb{R})\).
Theo bài ra ta có
\(\left| {x + 1 + \left( {y - 2} \right)i} \right| = \left| {x + 3 + \left( {4 - y} \right)i} \right| \Leftrightarrow {\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = {\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2} \Leftrightarrow y = x + 5\)
Số phức \({\rm{w}} = \frac{{z - 2i}}{{\overline z + i}} = \frac{{x + \left( {y - 2} \right)i}}{{x + \left( {1 - y} \right)i}} = \frac{{{x^2} - \left( {y - 2} \right)\left( {y - 1} \right) + x\left( {2y - 3} \right)i}}{{{x^2} + {{\left( {y - 1} \right)}^2}}}\)
w là một số thuần ảo khi và chỉ khi \(\left\{ \begin{array}{l} {x^2} - \left( {y - 2} \right)\left( {y - 1} \right) = 0\\ {x^2} + {\left( {y - 1} \right)^2} > 0\\ y = x + 5\\ x\left( {2y - 3} \right) \ne 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = - \frac{{12}}{7}\\ y = \frac{{23}}{7} \end{array} \right.\).
Vậy \(z = - \frac{{12}}{7} + \frac{{23}}{7}i\). Vậy chỉ có 1 số phức z thỏa mãn.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với \(A\left( 1;1;1 \right); B\left( -1;1;0 \right); C\left( 1;3;2 \right)\). Đường trung tuyến xuất phát từ đỉnh A của tam giác ABC nhận vectơ \(\overrightarrow{a}\) nào dưới đây là một vectơ chỉ phương?
Cho \(\int\limits_{2}^{5}{f\left( x \right)\text{d}x}=10\). Khi đó \(\int\limits_{5}^{2}{\left[ 2-4f\left( x \right) \right]\text{d}x}\) bằng
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Biết SA=3a, tính thể tích V của khối chóp S.ABCD.
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng qua điểm \(M\left( 2;-3;4 \right)\) và nhận \(\overrightarrow{n}=\left( -2;4;1 \right)\) làm vectơ pháp tuyến.
Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu \(\left( S \right)\) có tâm \(I\left( -1;2;1 \right)\) và đi qua điểm A(0;4;-1) là.
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình tham số của đường thẳng đi qua hai điểm \(A\left( 1;0;1 \right)\) và \(B\left( 3;2;-1 \right)\).
Thể tích khối nón có chiều cao h, bán kính đường tròn đáy r là:
Cho hình hộp chữ nhật ABCD.A'B'C'D' có \(AB=A{{A}^{'}}=a,AD=2a\), (tham khảo hình bên).
Góc giữa đường thẳng CA' và mặt phẳng (ABCD) là \(\alpha \). Khi đó \(\tan \alpha \) bằng
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 0 \right\}\) thỏa mãn \({f}'\left( x \right)=\frac{x+1}{{{x}^{2}}}, f\left( -2 \right)=\frac{3}{2}\) và \(f\left( 2 \right)=2\ln 2-\frac{3}{2}\). Giá trị của biểu thức \(f\left( -1 \right)+f\left( 4 \right)\) bằng
Tìm số nghiệm nguyên dương của bất phương trình \({\left( {\frac{1}{5}} \right)^{{x^2} - 2x}} \ge \frac{1}{{125}}\)
Có tất cả bao nhiêu giá trị nguyên của y để phương trình \(\ln \left( {{\log }_{5}}y+\ln \left( {{\log }_{5}}y+\sin x \right) \right)=\sin x\) có nghiệm?
Một hình trụ có bán kính đáy r=5cm, chiều cao h=7cm. Diện tích xung quanh của hình trụ này là:
Trong không gian Oxyz, cho hai điểm \(A\left( 1;2;-3 \right)\) và \(B\left( 3;-2;-1 \right)\). Tọa độ trung điểm đoạn thẳng AB là:
Cho hàm số bậc ba y=f(x) có đồ thị là đường cong hình bên.
Biết f(x) đạt cực tiểu tại x=1 và f(x)+1 và f(x)-1 lần lượt chia hết cho \({{(x-1)}^{2}}\) và \({{(x+1)}^{2}}\). Gọi \({{S}_{1}},{{S}_{2}}\) là diện tích hai hình phẳng được gạch trong hình bên. Tính \({{S}_{1}}+{{S}_{2}}\).