Lời giải của giáo viên
TXĐ: D = R.
Ta có: \(y'=3\left( m+1 \right){{x}^{2}}+2\left( m+1 \right)x-2\)
TH1: \(m=-1\Rightarrow y'=-2<0\,\,\forall x\in R\Rightarrow \) hàm số đã cho nghịch biến trên R.
TH2: \(m\ne -1\), để hàm số nghịch biến trên R thì \(y'\le 0\,\,\forall x\in R\) và chỉ bằng 0 tại hữu hạn điểm.
\( \Leftrightarrow \left\{ \begin{array}{l}
m + 1 < 0\\
\Delta ' = {\left( {m + 1} \right)^2} - 3\left( {m + 1} \right)\left( { - 2} \right) \le 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m < - 1\\
{m^2} + 8m + 7 \le 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m < - 1\\
- 7 \le m \le - 1
\end{array} \right. \Leftrightarrow - 7 \le m < - 1\)
Với \(m=-7\) ta có: \(y=-6{{x}^{3}}-6{{x}^{2}}-2x+2,\,\,y'=-18{{x}^{2}}-12x-2=0\Leftrightarrow x=-\frac{1}{3}\Rightarrow m=-7\) thỏa mãn.
Kết hợp 2 trường hợp ta có \(m\in \left[ -7;-1 \right]\overset{m\in Z}{\mathop{\Rightarrow }}\,m\in \left\{ -7;-6;-5;...;-1 \right\}\Rightarrow \) Có tất cả 7 giá trị m nguyên thỏa mãn yêu cầu bài toán.
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = 3a và SA vuông góc với mặt phẳng đáy. Tính thể tích V của khối chóp S.ABCD.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( -1;2;-4 \right)\) và \(B\left( 1;0;2 \right)\). Viết phương trình đường thẳng d đi qua hai điểm A và B.
Trong không gian với hệ tọa độ Oxyz cho ba mặt phẳng \(\left( P \right):\,\,x-2y+z-1=0\), \(\left( Q \right):\,\,x-2y+z+8=0\) và \(\left( R \right):\,\,x-2y+z-4=0\). Một đường thẳng d thay đổi cắt ba mặt phẳng \(\left( P \right);\left( Q \right);\left( R \right)\) lần lượt tại A, B, C. Đặt \(T=\frac{A{{B}^{2}}}{4}+\frac{144}{AC}\). Tìm giá trị nhỏ nhất của \(T\).
Biết rằng \(I=\int\limits_{0}^{1}{x\cos 2xdx}=\frac{1}{4}\left( a\sin 2+b\cos 2+c \right)\) với \(a,b,c\in Z\). Mệnh đề nào sau đây là đúng?
Cho hàm số \(y=\frac{2x+1}{1-x}\). Mệnh đề nào sau đây là đúng?
Phương trình \(\sin 2x+\cos x=0\) có tổng các nghiệm trong khoảng \(\left( 0;2\pi \right)\) bằng:
Trong mặt phẳng phức gọi A, B, C lần lượt là các điểm biểu diễn các số phức \({{z}_{1}}=\left( 1-i \right)\left( 2+i \right),\,\,{{z}_{2}}=1+3i;\,\,{{z}_{3}}=-1-3i.\) Tam giác ABC là
Tìm tất cả các giá trị của x thỏa mãn \(\int\limits_{0}^{x}{\sin 2tdt}=0\)
Cho hàm số \(y=\frac{1}{4}{{x}^{4}}-2{{x}^{2}}+2018\). Khẳng định nào sau đây là đúng?
Từ các chữ số 0, 1, 2, 3, 4 có thể lập được bao nhiêu số có năm chữ số khác nhau từng đôi một?
Cho \({{\log }_{9}}x={{\log }_{12}}y={{\log }_{16}}\left( x+y \right)\). Tính giá trị tỷ số \(\frac{x}{y}\) ?
Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)={{e}^{2x}}\) và \(F\left( 0 \right)=\frac{3}{2}.\) Tính \(F\left( \frac{1}{2} \right).\)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a. Các cạnh bên của hình chóp đều bằng \(a\sqrt{2}\). Tính góc giữa hai đường thẳng AB và SC.
Cho hàm số \(y=\frac{2x+1}{x+1}\) có đồ thị \(\left( C \right)\). Tìm tất cả các giá trị thực của tham số m sao cho đường thẳng \(d:\,\,y=x+m-1\) cắt \(\left( C \right)\) tại hai điểm phân biệt \(AB\) thỏa mãn \(AB=2\sqrt{3}\).
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) liên tục trên \(\left[ a;b \right];f\left( b \right)=5\) và \(\int\limits_{a}^{b}{f'\left( x \right)dx}=3\sqrt{5}\). Tính giá trị \(f\left( a \right)?\)