Trong mặt phẳng phức gọi A, B, C lần lượt là các điểm biểu diễn các số phức \({{z}_{1}}=\left( 1-i \right)\left( 2+i \right),\,\,{{z}_{2}}=1+3i;\,\,{{z}_{3}}=-1-3i.\) Tam giác ABC là
A. Một tam giác đều.
B. Một tam giác vuông cân.
C. Một tam giác vuông (không cân).
D. Một tam giác cân (không đều, không vuông).
Lời giải của giáo viên
Ta có: \({{z}_{1}}=\left( 1-i \right)\left( 2+i \right)=3-i\)
\(\Rightarrow A\left( 3;-1 \right),B\left( 1;3 \right),C\left( -1;-3 \right)\)
Ta có:
\(\left\{ \begin{align} & AB=\sqrt{{{\left( 1-3 \right)}^{2}}+{{\left( 3+1 \right)}^{2}}}=2\sqrt{5} \\ & AC=\sqrt{{{\left( -1-3 \right)}^{2}}+{{\left( -3+1 \right)}^{2}}}=2\sqrt{5} \\ & BC=\sqrt{{{\left( -1-1 \right)}^{2}}+{{\left( -3-3 \right)}^{2}}}=2\sqrt{10} \\ \end{align} \right.\Rightarrow A{{B}^{2}}+A{{C}^{2}}=B{{C}^{2}}\)
Vậy tam giác ABC vuông cân tại A.
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = 3a và SA vuông góc với mặt phẳng đáy. Tính thể tích V của khối chóp S.ABCD.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( -1;2;-4 \right)\) và \(B\left( 1;0;2 \right)\). Viết phương trình đường thẳng d đi qua hai điểm A và B.
Biết rằng \(I=\int\limits_{0}^{1}{x\cos 2xdx}=\frac{1}{4}\left( a\sin 2+b\cos 2+c \right)\) với \(a,b,c\in Z\). Mệnh đề nào sau đây là đúng?
Trong không gian với hệ tọa độ Oxyz cho ba mặt phẳng \(\left( P \right):\,\,x-2y+z-1=0\), \(\left( Q \right):\,\,x-2y+z+8=0\) và \(\left( R \right):\,\,x-2y+z-4=0\). Một đường thẳng d thay đổi cắt ba mặt phẳng \(\left( P \right);\left( Q \right);\left( R \right)\) lần lượt tại A, B, C. Đặt \(T=\frac{A{{B}^{2}}}{4}+\frac{144}{AC}\). Tìm giá trị nhỏ nhất của \(T\).
Cho hàm số \(y=\frac{2x+1}{1-x}\). Mệnh đề nào sau đây là đúng?
Phương trình \(\sin 2x+\cos x=0\) có tổng các nghiệm trong khoảng \(\left( 0;2\pi \right)\) bằng:
Cho hàm số \(y=\frac{1}{4}{{x}^{4}}-2{{x}^{2}}+2018\). Khẳng định nào sau đây là đúng?
Tìm tất cả các giá trị của x thỏa mãn \(\int\limits_{0}^{x}{\sin 2tdt}=0\)
Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)={{e}^{2x}}\) và \(F\left( 0 \right)=\frac{3}{2}.\) Tính \(F\left( \frac{1}{2} \right).\)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a. Các cạnh bên của hình chóp đều bằng \(a\sqrt{2}\). Tính góc giữa hai đường thẳng AB và SC.
Từ các chữ số 0, 1, 2, 3, 4 có thể lập được bao nhiêu số có năm chữ số khác nhau từng đôi một?
Cho \({{\log }_{9}}x={{\log }_{12}}y={{\log }_{16}}\left( x+y \right)\). Tính giá trị tỷ số \(\frac{x}{y}\) ?
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) liên tục trên \(\left[ a;b \right];f\left( b \right)=5\) và \(\int\limits_{a}^{b}{f'\left( x \right)dx}=3\sqrt{5}\). Tính giá trị \(f\left( a \right)?\)
Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\left( m+1 \right){{x}^{3}}+\left( m+1 \right){{x}^{2}}-2x+2\) nghịch biến trên R.
Cho hàm số \(y=\frac{2x+1}{x+1}\) có đồ thị \(\left( C \right)\). Tìm tất cả các giá trị thực của tham số m sao cho đường thẳng \(d:\,\,y=x+m-1\) cắt \(\left( C \right)\) tại hai điểm phân biệt \(AB\) thỏa mãn \(AB=2\sqrt{3}\).