Đề thi thử THPT QG năm 2022 môn Toán - Trường THPT Tân Phong
Đề thi thử THPT QG năm 2022 môn Toán
-
Hocon247
-
50 câu hỏi
-
90 phút
-
184 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Có bao nhiêu số nguyên dương m để bất phương trình \(m{{.9}^{x}}-\left( 2m+1 \right){{.6}^{x}}+m{{.4}^{x}}\le 0\) nghiệm đúng với mọi \(x\in \left( 0;1 \right)?\)
\(m{{.9}^{x}}-\left( 2m+1 \right){{.6}^{x}}+m{{.4}^{x}}\le 0\Leftrightarrow m{{\left( \frac{9}{4} \right)}^{x}}-\left( 2m+1 \right).{{\left( \frac{3}{2} \right)}^{x}}+m\le 0\)
Đặt \({{\left( \frac{3}{2} \right)}^{x}}=t\,\,\left( 1<t<\frac{3}{2} \right)\), khi đó phương trình tương đương
\(\begin{align} & m{{t}^{2}}-\left( 2m+1 \right)t+m\le 0\Leftrightarrow m\left( {{t}^{2}}-2t+1 \right)-t\le 0 \\ & \Leftrightarrow m{{\left( t-1 \right)}^{2}}\le t\Leftrightarrow m\le \frac{t}{{{\left( t-1 \right)}^{2}}}=f\left( t \right)\,\,\,\left( 1<t<\frac{3}{2} \right) \\ \end{align}\)
Xét hàm số \(f\left( t \right)=\frac{t}{{{\left( t-1 \right)}^{2}}}\) trên \(\left( 1;\frac{3}{2} \right)\) ta có:
\(f'\left( t \right)=\frac{{{\left( t-1 \right)}^{2}}-t.2\left( t-1 \right)}{{{\left( t-1 \right)}^{4}}}=\frac{{{t}^{2}}-2t+1-2{{t}^{2}}+2t}{{{\left( t-1 \right)}^{4}}}=\frac{-{{t}^{2}}+1}{{{\left( t-1 \right)}^{4}}}=\frac{t+1}{{{\left( 1-t \right)}^{3}}}=0\Leftrightarrow t=-1\)
Ta có : \(f\left( {\frac{3}{2}} \right) = 6 \Rightarrow f\left( t \right) > 6\,\,\forall t \in \left( {1;\frac{3}{2}} \right);\,\,\,m \le f\left( t \right)\,\,\forall t \in \left( {1;\frac{3}{2}} \right) \Rightarrow m \le 6.\)
Có 6 giá trị nguyên dương của m thỏa mãn yêu cầu bài toán là \(m \in \left\{ {1;2;3;4;5;6} \right\}\)
Chọn D.
Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)={{e}^{2x}}\) và \(F\left( 0 \right)=\frac{3}{2}.\) Tính \(F\left( \frac{1}{2} \right).\)
\(F\left( x \right)=\int\limits_{{}}^{{}}{f\left( x \right)dx}=\int\limits_{{}}^{{}}{{{e}^{2x}}dx}=\frac{{{e}^{2x}}}{2}+C\Rightarrow F\left( 0 \right)=\frac{1}{2}+C=\frac{3}{2}\Rightarrow C=1\Rightarrow F\left( x \right)=\frac{{{e}^{2x}}}{2}+1\Rightarrow F\left( \frac{1}{2} \right)=\frac{e}{2}+1\)
Chọn D.
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất P để 3 quyển được lấy ra có ít nhất một quyển sách là toán.
Số cách lấy ba quyển sách bất kì là \(C_{9}^{3}=84\Rightarrow \left| \Omega \right|=84\)
Gọi A là biến cố: “3 quyển được lấy ra có ít nhất một quyển sách là toán”, suy ra \(\overline{A}:\) “3 quyển sách lấy ra không có quyển sách toán” \(\Rightarrow \left| \overline{A} \right|=C_{5}^{3}=10\Rightarrow \left| A \right|=84-10=74\)
\(\Rightarrow P\left( A \right)=\frac{\left| A \right|}{\left| \Omega \right|}=\frac{74}{84}=\frac{37}{42}.\)
Chọn C.
Cho tam giác ABC có \(\widehat{ABC}={{45}^{0}},\widehat{ACB}={{30}^{0}},AB=\frac{\sqrt{2}}{2}.\) Quay tam giác ABC xung quanh cạnh BC ta được khối tròn xoay có thể tích V bằng:
Kẻ \(AH\bot BC\).
Khi quay tam giác ABC quanh cạnh BC ta được hai hình nón có cùng bán kính đáy AH đỉnh C và B.
Trong tam giác vuông AHB có: \(AH=AB.\sin 45=\frac{\sqrt{2}}{2}.\frac{1}{\sqrt{2}}=\frac{1}{2}\)
\(BH=AB.\cos {{45}^{0}}=\frac{\sqrt{2}}{2}.\frac{1}{\sqrt{2}}=\frac{1}{2}.\)
Trong tam giác vuông AHC có: \(CH=AH.\cot 30=\frac{1}{2}.\sqrt{3}=\frac{\sqrt{3}}{2}.\)
Ta có: \(V=\frac{1}{3}\pi A{{H}^{2}}.CH+\frac{1}{3}\pi A{{H}^{2}}.BH=\frac{1}{3}\pi .\frac{1}{4}.\frac{\sqrt{3}}{2}+\frac{1}{3}\pi .\frac{1}{4}.\frac{1}{2}=\pi \left( \frac{\sqrt{3}}{24}+\frac{1}{24} \right)=\frac{\pi }{24}\left( 1+\sqrt{3} \right)\)
Chọn D.
Cho hàm số \(y=\frac{2x+1}{1-x}\). Mệnh đề nào sau đây là đúng?
TXĐ: \(D=R\backslash \left\{ 1 \right\}\)
Ta có: \(y'=\frac{1.2+1.1}{{{\left( 1-x \right)}^{2}}}=\frac{3}{{{\left( 1-x \right)}^{2}}}>0\Rightarrow \) Hàm số đồng biến trên \(\left( -\infty ;1 \right)\) và \(\left( 1;+\infty \right).\)
Chọn B.
Tìm tập xác định của hàm số \(y={{\left( 3{{x}^{2}}-1 \right)}^{\frac{1}{3}}}.\)
\(\frac{1}{3}\notin Z\Rightarrow \) Hàm số xác định \(\Leftrightarrow 3{{x}^{2}}-1>0\Leftrightarrow \left[ \begin{align} & x>\frac{1}{\sqrt{3}} \\ & x<-\frac{1}{\sqrt{3}} \\ \end{align} \right.\Rightarrow D=\left( -\infty ;-\frac{1}{\sqrt{3}} \right)\cup \left( \frac{1}{\sqrt{3}};+\infty \right)\)
Chọn D.
Cho hàm số \(y=f\left( x \right)\) liên tục trên R và thỏa mãn \(\int\limits_{{}}^{{}}{f\left( x \right)dx}=4{{x}^{3}}-3{{x}^{2}}+2x+C\). Hàm số \(f\left( x \right)\) là hàm số nào trong các hàm số sau?
\(f\left( x \right)=\left( \int\limits_{{}}^{{}}{f\left( x \right)dx} \right)'=12{{x}^{2}}-6x+2\)
Chọn B.
Cho hàm số \(y=\frac{2x+1}{x+1}\) có đồ thị \(\left( C \right)\). Tìm tất cả các giá trị thực của tham số m sao cho đường thẳng \(d:\,\,y=x+m-1\) cắt \(\left( C \right)\) tại hai điểm phân biệt \(AB\) thỏa mãn \(AB=2\sqrt{3}\).
Xét phương trình hoành độ giao điểm:
\(\begin{align} & \frac{2x+1}{x+1}=x+m-1\,\,\left( x\ne -1 \right) \\ & \Leftrightarrow 2x+1={{x}^{2}}+\left( m-1 \right)x+x+m-1 \\ & \Leftrightarrow {{x}^{2}}+\left( m-2 \right)x+m-2=0\,\,\left( * \right) \\ \end{align}\)
Để (C) và d cắt nhau tại hai điểm phân biệt \(\Leftrightarrow \) Phương trình (*) có 2 nghiệm phân biệt khác -1.
\( \Rightarrow \left\{ \begin{array}{l}
{\left( { - 1} \right)^2} + \left( {m - 2} \right)\left( { - 1} \right) + m - 2 \ne 0\\
{\left( {m - 2} \right)^2} - 4.\left( {m - 2} \right) > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
1 - m + 2 + m - 2 \ne 0\\
\left[ \begin{array}{l}
m - 2 > 4\\
m - 2 < 0
\end{array} \right.
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
1 \ne 0\,\,\left( {luon\,dung} \right)\\
\left[ \begin{array}{l}
m > 6\\
m < 2
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
m > 6\\
m < 2
\end{array} \right..\)
Khi đó gọi \({{x}_{A}};{{x}_{B}}\) là hoành độ các điểm A, B là hai nghiệm của phương trình (*) \(\Rightarrow A\left( {{x}_{A}};{{x}_{A}}+m-1 \right);\,\,B\left( {{x}_{B}};{{x}_{B}}+m-1 \right)\Rightarrow A{{B}^{2}}={{\left( {{x}_{B}}-{{x}_{A}} \right)}^{2}}+{{\left( {{x}_{B}}-{{x}_{A}} \right)}^{2}}=2{{\left( {{x}_{B}}-{{x}_{A}} \right)}^{2}}\)
Theo định lí Vi-et ta có:
\(\begin{array}{l}
\left\{ \begin{array}{l}
{x_A} + {x_B} = 2 - m\\
{x_A}.{x_B} = m - 2
\end{array} \right. \Rightarrow {\left( {{x_B} - {x_A}} \right)^2} = {\left( {{x_A} + {x_B}} \right)^2} - 4{x_A}{x_B} = {\left( {2 - m} \right)^2} - 4\left( {m - 2} \right) = {m^2} - 8m + 12\\
\Rightarrow A{B^2} = 2\left( {{m^2} - 8m + 12} \right) = 12 \Leftrightarrow {m^2} - 8m + 12 = 6 \Leftrightarrow {m^2} - 8m + 6 = 0 \Leftrightarrow m = 4 \pm \sqrt {10} \,\,\left( {tm} \right)
\end{array}\)
Chọn D.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):\,\,2x-5z+1=0\), vectơ \(\overrightarrow{n}\) nào sau đây là vectơ pháp tuyến của (P)?
\(\left( P \right):\,\,2x-5z+1=0\) có 1 VTPT là \(\overrightarrow{n}=\left( 2;0;-5 \right)\).
Chọn A.
Trong không gian với hệ tọa độ Oxyz, cho \(M\left( 3;2;1 \right)\). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox, Oy, Oz tại A, B, C sao cho M là trục tâm tam giác ABC. Phương trình mặt phẳng (P) là:
Gọi CH, BK lần lượt là các đường cao của tam giác ABC, \(\Rightarrow M=CH\cap BK\).
Ta có: \(\left\{ \begin{align} & AB\bot CH \\ & AB\bot OC \\ \end{align} \right.\Rightarrow AB\bot \left( OCH \right)\Rightarrow AB\bot OM\)
Chứng minh tương tự ta có \(AC\bot OM\Rightarrow OM\bot \left( ABC \right)\)
\(\overrightarrow{OM}=\left( 3;2;1 \right)\), suy ra mặt phẳng (ABC) đi qua \(M\left( 3;2;1 \right)\) và nhận \(\overrightarrow{OM}=\left( 3;2;1 \right)\) là 1 VTPT.
\(\begin{align} & \Rightarrow pt\left( ABC \right):\,\,3\left( x-3 \right)+2\left( y-2 \right)+\left( z-1 \right)=0 \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\Leftrightarrow 3x+2y+z-14=0 \\ \end{align}\)
Chọn C.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 1;0;0 \right),B\left( 0;2;0 \right),C\left( 0;0;3 \right).\) Gọi M là điểm thay đổi trên mặt phẳng (ABC) và N là điểm trên tia OM sao cho OM.ON = 1. Biết rằng N luôn thuộc mặt cầu cố định. Viết phương trình mặt cầu đó?
Khi \(M\equiv A\Rightarrow OM=1\Rightarrow ON=1,\,\,N\in OM\Rightarrow N\left( 1;0;0 \right)\), loại các đáp án A, C và D.
Chọn B.
Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, \(AB=a,BC=a\sqrt{3}\), góc hợp bởi đường thẳng AA’ và mặt phẳng (A’B’C) bằng \({{45}^{0}}\), hình chiếu vuông góc của B’ lên (ABC) trùng với trọng tâm của tam giác ABC. Tính thế tích V khối lăng trụ ABC.A’B’C’.
Gọi H là trọng tâm tam giác ABC \(\Rightarrow B'H\bot \left( ABC \right)\)
Ta có: \(\widehat{\left( AA';\left( ABC \right) \right)}=\widehat{\left( BB';\left( ABC \right) \right)}=\widehat{\left( BB';BH \right)}=\widehat{B'BH}={{45}^{0}}\)
Xét tam giác vuông ABC có:
\(\begin{align}& AC=\sqrt{A{{B}^{2}}+B{{C}^{2}}}=2a\Rightarrow BM=\frac{1}{2}AC=a\Rightarrow BH=\frac{2}{3}BM=\frac{2a}{3} \\ & \Rightarrow B'H=BM.\tan {{45}^{0}}=\frac{2a}{3} \\ & {{S}_{ABC}}=\frac{1}{2}AB.BC=\frac{1}{2}a.a\sqrt{3}=\frac{{{a}^{2}}\sqrt{3}}{2} \\ & \Rightarrow {{V}_{ABC.A'B'C'}}=B'H.{{S}_{ABC}}=\frac{2a}{3}.\frac{{{a}^{2}}\sqrt{3}}{2}=\frac{{{a}^{3}}\sqrt{3}}{3} \\ \end{align}\)
Chọn B.
Cho \({{\log }_{9}}x={{\log }_{12}}y={{\log }_{16}}\left( x+y \right)\). Tính giá trị tỷ số \(\frac{x}{y}\) ?
ĐK: \(x>0;y>0\).
Đặt \({{\log }_{9}}x={{\log }_{12}}y={{\log }_{16}}\left( x+y \right)=t\)
\(\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
x = {9^t}\\
y = {12^t}\\
x + y = {16^t}
\end{array} \right. \Rightarrow {9^t} + {12^t} = {16^t} \Leftrightarrow {\left( {\frac{9}{{16}}} \right)^t} + {\left( {\frac{3}{4}} \right)^t} = 1\\
\Leftrightarrow {\left( {\frac{3}{4}} \right)^{2t}} + {\left( {\frac{3}{4}} \right)^t} - 1 = 0 \Leftrightarrow {\left( {\frac{3}{4}} \right)^t} = \frac{{ - 1 + \sqrt 5 }}{2}\\
\Rightarrow \frac{x}{y} = \frac{{{9^t}}}{{{{12}^t}}} = {\left( {\frac{3}{4}} \right)^t} = \frac{{ - 1 + \sqrt 5 }}{2}
\end{array}\)
Chọn C.
Từ các chữ số 0, 1, 2, 3, 4 có thể lập được bao nhiêu số có năm chữ số khác nhau từng đôi một?
Gọi số có 5 chữ số đôi một khác nhau là \(\overline{abcde}\,\,\left( a\ne 0;\,\,a\ne b\ne c\ne d\ne e \right)\)
Số cách chọn chữ số a là 4 cách.
Số cách chọn bốn chữ số còn lại là 4! = 24 cách.
Vậy có tất cả 4.24 = 96 cách.
Chọn C.
Tính diện tích S của hình phẳng giới hạn bởi đường thẳng \(y=2x+1\) và đồ thị hàm số \(y={{x}^{2}}-x+3\)
Xét phương trình hoành độ giao điểm:\(2x+1={{x}^{2}}-x+3\Leftrightarrow {{x}^{2}}-3x+2=0\Leftrightarrow \left[ \begin{align} & x=1 \\ & x=2 \\ \end{align} \right.\)
\(\Rightarrow S=\int\limits_{1}^{2}{\left| {{x}^{2}}-x+3-2x-1 \right|dx}=\int\limits_{1}^{2}{\left| {{x}^{2}}-3x+2 \right|dx}\), sử dụng MTCT ta có:
Vậy \(S=\frac{1}{6}.\)
Chọn C.
Đường cong trong hình bên là đồ thị của hàm số nào dưới đây?
Ta có \(\underset{x\to -\infty }{\mathop{\lim }}\,f\left( x \right)=-\infty \Rightarrow a>0\Rightarrow \) Loại A.
\(y\left( 1 \right)=-1\Rightarrow \) Loại B và D.
Chọn C.
Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\left( m+1 \right){{x}^{3}}+\left( m+1 \right){{x}^{2}}-2x+2\) nghịch biến trên R.
TXĐ: D = R.
Ta có: \(y'=3\left( m+1 \right){{x}^{2}}+2\left( m+1 \right)x-2\)
TH1: \(m=-1\Rightarrow y'=-2<0\,\,\forall x\in R\Rightarrow \) hàm số đã cho nghịch biến trên R.
TH2: \(m\ne -1\), để hàm số nghịch biến trên R thì \(y'\le 0\,\,\forall x\in R\) và chỉ bằng 0 tại hữu hạn điểm.
\( \Leftrightarrow \left\{ \begin{array}{l}
m + 1 < 0\\
\Delta ' = {\left( {m + 1} \right)^2} - 3\left( {m + 1} \right)\left( { - 2} \right) \le 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m < - 1\\
{m^2} + 8m + 7 \le 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m < - 1\\
- 7 \le m \le - 1
\end{array} \right. \Leftrightarrow - 7 \le m < - 1\)
Với \(m=-7\) ta có: \(y=-6{{x}^{3}}-6{{x}^{2}}-2x+2,\,\,y'=-18{{x}^{2}}-12x-2=0\Leftrightarrow x=-\frac{1}{3}\Rightarrow m=-7\) thỏa mãn.
Kết hợp 2 trường hợp ta có \(m\in \left[ -7;-1 \right]\overset{m\in Z}{\mathop{\Rightarrow }}\,m\in \left\{ -7;-6;-5;...;-1 \right\}\Rightarrow \) Có tất cả 7 giá trị m nguyên thỏa mãn yêu cầu bài toán.
Chọn C.
Cho biết \(0<a<1\). Chọn khẳng định đúng trong các khẳng định sau:
\({\log _a}{x_1} < {\log _a}{x_2} \Rightarrow \left\{ \begin{array}{l}
0 < a < 1\\
{x_1} > {x_2} > 0
\end{array} \right. \Rightarrow A\) sai
\({\log _a}x < 1 = {\log _a}a \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
a > 1\\
0 < x < a
\end{array} \right.\\
\left\{ \begin{array}{l}
0 < a < 1\\
x > a > 0
\end{array} \right.
\end{array} \right. \Rightarrow B\) sai
\({\log _a}x > 0 = {\log _a}1 \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
a > 1\\
x > 1
\end{array} \right.\\
\left\{ \begin{array}{l}
0 < a < 1\\
0 < x < 1
\end{array} \right.
\end{array} \right. \Rightarrow C\) sai
Chọn D.
Xác định phần ảo của số phức \(z=12-18i\) ?
Số phức \(z=12-18i\) có phần ảo bằng -18.
Chọn A.
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}{{\left( x-1 \right)}^{3}}\left( x-2 \right)\). Số điểm cực trị của hàm số \(f\left( x \right)\) bằng:
\(f'\left( x \right)={{x}^{2}}{{\left( x-1 \right)}^{3}}\left( x-2 \right)=0\Leftrightarrow \left[ \begin{align} & x=0 \\ & x=1 \\ & x=2 \\ \end{align} \right.\)
\(x=0\) là nghiệm bội hai nên qua x = 0 thì f’(x) không đổi dấu, do đó x = 0 không là điểm cực trị của hàm số \(y=f\left( x \right)\).
Vậy hàm số đã cho có 2 điểm cực trị là x = 1 và x = 2.
Chọn B.
Cho số phức \(z\) thỏa mãn \(\left( 3+i \right)\left| z \right|=\frac{-2+14i}{z}+1-3i\). Chọn khẳng định đúng?
\(\begin{align} & \,\,\,\,\,\left( 3+i \right)\left| z \right|=\frac{-2+14i}{z}+1-3i \\ & \Leftrightarrow \left( 3+i \right)\left| z \right|-1+3i=\frac{-2+14i}{z} \\ & \Leftrightarrow \left( 3\left| z \right|-1 \right)+\left( \left| z \right|+3 \right)i=\frac{-2+14i}{z} \\ \end{align}\)
Lấy mođun hai vế ta có : \(\sqrt{9{{\left| z \right|}^{2}}-6\left| z \right|+1+{{\left| z \right|}^{2}}+6\left| z \right|+9}=\frac{10\sqrt{2}}{\left| z \right|}\)
\( \Leftrightarrow 10{\left| z \right|^2} + 10 = \frac{{200}}{{{{\left| z \right|}^2}}} \Leftrightarrow {\left| z \right|^4} + {\left| z \right|^2} - 20 = 0 \Leftrightarrow {\left| z \right|^2} = 4 \Rightarrow \left| z \right| = 2 \in \left( {\frac{7}{4};\frac{{11}}{5}} \right)\)
Chọn D.
Tìm tập nghiệm S của bất phương trình \({{\log }_{2}}\left( 3x-2 \right)>{{\log }_{2}}\left( 6-5x \right)\).
ĐK: \(\left\{ \begin{array}{l}
3x - 2 > 0\\
6 - 5x > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x > \frac{2}{3}\\
x < \frac{6}{5}
\end{array} \right. \Rightarrow \frac{2}{3} < x < \frac{6}{5}\)
\(\begin{array}{l}
{\log _2}\left( {3x - 2} \right) > {\log _2}\left( {6 - 5x} \right)\\
\Leftrightarrow 3x - 2 > 6 - 5x\\
\Leftrightarrow 8x > 8\\
\Leftrightarrow x > 1.
\end{array}\)
Kết hợp điều kiện ta có \(1< x < \frac{6}{5}\Rightarrow S=\left( 1; \frac{6}{5} \right)\).
Chọn A.
Cho chuyển động thẳng xác định bởi mặt phương trình \(s=\frac{1}{2}\left( {{t}^{4}}+3{{t}^{2}} \right),\) t được tính bằng giây, s được tính bằng m. Vận tốc của chuyển động tại t = 4 (giây) bằng:
\(v=s'=2{{t}^{3}}+3t\Rightarrow v\left( t \right)={{2.4}^{3}}+3.4=140\,\,\left( m/s \right)\)
Chọn D.
Trong không gian với hệ tọa độ Oxyz cho ba mặt phẳng \(\left( P \right):\,\,x-2y+z-1=0\), \(\left( Q \right):\,\,x-2y+z+8=0\) và \(\left( R \right):\,\,x-2y+z-4=0\). Một đường thẳng d thay đổi cắt ba mặt phẳng \(\left( P \right);\left( Q \right);\left( R \right)\) lần lượt tại A, B, C. Đặt \(T=\frac{A{{B}^{2}}}{4}+\frac{144}{AC}\). Tìm giá trị nhỏ nhất của \(T\).
Dễ dàng thấy 3 mặt phẳng \(\left( P \right);\left( Q \right);\left( R \right)\) song song với nhau và (P) nằm giữa (Q) và (R), ta tính được \(d\left( \left( P \right);\left( Q \right) \right)=BH=9;\,\,d\left( \left( P \right);\left( R \right) \right)=HK=3\)
Ta có:
\(\begin{align}& T=\frac{A{{B}^{2}}}{4}+\frac{144}{AC}=\frac{A{{B}^{2}}}{4}+\frac{72}{AC}+\frac{72}{AC} \\ & \overset{Cauchy}{\mathop{\ge }}\,3\sqrt[3]{\frac{A{{B}^{2}}}{4}.\frac{72}{AC}.\frac{72}{AC}}=3\sqrt[3]{1296.{{\left( \frac{AB}{AC} \right)}^{2}}} \\ \end{align}\)
Theo định lí Ta-let ta có :
\(\frac{AB}{AC}=\frac{BH}{HK}=3\Rightarrow T\overset{Cauchy}{\mathop{\ge }}\,3\sqrt[3]{{{1296.3}^{2}}}=54\sqrt[3]{2}\)
Vậy \(\min T=54\sqrt[3]{2}\).
Chọn B.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( -1;2;-4 \right)\) và \(B\left( 1;0;2 \right)\). Viết phương trình đường thẳng d đi qua hai điểm A và B.
Ta có: \(\overrightarrow{AB}=\left( 2;-2;6 \right)=2\left( 1;-1;3 \right)\).
\(\Rightarrow \) đường thẳng d đi qua A và nhận \(\overrightarrow{u}=\left( 1;-1;3 \right)\) là 1 VTCP nên có phương trình : \(d:\,\,\frac{x+1}{1}=\frac{y-2}{-1}=\frac{z+4}{3}\)
Chọn C.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = 3a và SA vuông góc với mặt phẳng đáy. Tính thể tích V của khối chóp S.ABCD.
\({{V}_{S.ABCD}}=\frac{1}{3}.SA.{{S}_{ABCD}}=\frac{1}{3}.3a.{{a}^{2}}={{a}^{3}}\)
Chọn C.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu có phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y-6z+9=0\). Tìm tâm I và bán kính R của mặt cầu?
Mặt cầu đã cho có tâm \(I\left( 1;-2;3 \right)\) và bán kính \(R=\sqrt{{{1}^{2}}+{{\left( -2 \right)}^{2}}+{{3}^{2}}-9}=\sqrt{5}\)
Chọn A.
Cho khai triển nhị thức Newton \({{\left( 2-3x \right)}^{2x}}\), biết rằng n là số nguyên dương thỏa mãn \(C_{2n+1}^{1}+C_{2n+1}^{3}+C_{2n+1}^{5}+...+C_{2n+1}^{2n+1}=1024\). Tìm hệ số của \({{x}^{7}}\) trong khai triển \({{\left( 2-3x \right)}^{2n}}\)
Ta có: \({{\left( x+1 \right)}^{2n+1}}=\sum\limits_{k=0}^{2n+1}{C_{2n+1}^{k}{{x}^{k}}}\)
Khi \(x=1\) ta có: \({{2}^{2n+1}}=\sum\limits_{k=0}^{2n+1}{C_{2n+1}^{k}}=C_{2n+1}^{0}+C_{2n+1}^{1}+C_{2n+1}^{2}+C_{2n+1}^{3}+C_{2n+1}^{4}+C_{2n+1}^{5}+...+C_{2n+1}^{2n}+C_{2n+1}^{2n+1}\,\,\,\,\left( 1 \right)\)
Khi \(x=-1\) ta có: \(0=\sum\limits_{k=0}^{2n+1}{C_{2n+1}^{k}{{\left( -1 \right)}^{k}}}=C_{2n+1}^{0}-C_{2n+1}^{1}+C_{2n+1}^{2}-C_{2n+1}^{3}+C_{2n+1}^{4}-C_{2n+1}^{5}+...+C_{2n+1}^{2n}-C_{2n+1}^{2n+1}\,\,\left( 2 \right)\)
\(\begin{align} & \left( 1 \right)-\left( 2 \right)\Rightarrow {{2}^{2n+1}}=2\left( C_{2n+1}^{1}+C_{2n+1}^{3}+C_{2n+1}^{5}+...+C_{2n+1}^{2n+1} \right)=2.1024=2048 \\ & \Leftrightarrow 2n+1=11\Leftrightarrow 2n=10\Leftrightarrow n=5 \\ & \Rightarrow {{\left( 2-3x \right)}^{2n}}={{\left( 2-3x \right)}^{10}}=\sum\limits_{k=0}^{10}{C_{10}^{k}{{.2}^{10-k}}.{{\left( -3x \right)}^{k}}}=\sum\limits_{k=0}^{10}{C_{10}^{k}{{.2}^{10-k}}.{{\left( -3 \right)}^{k}}.{{x}^{k}}} \\ \end{align}\)
Để tìm hệ số của \({{x}^{7}}\) ta cho \(k=7\Rightarrow \) Hệ số của \({{x}^{7}}\) là \(C_{10}^{7}{{.2}^{3}}.{{\left( -3 \right)}^{7}}=-2099520\)
Chọn A.
Tính đạo hàm của hàm số \(y={{\log }_{2018}}\left( 3x+1 \right)\).
Ta có \(y'=\frac{\left( 3x+1 \right)'}{\left( 3x+1 \right)\ln 2018}=\frac{3}{\left( 3x+1 \right)\ln 2108}\)
Chọn D.
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) liên tục trên \(\left[ a;b \right];f\left( b \right)=5\) và \(\int\limits_{a}^{b}{f'\left( x \right)dx}=3\sqrt{5}\). Tính giá trị \(f\left( a \right)?\)
\(\int\limits_{a}^{b}{f'\left( x \right)dx}=\left. f\left( x \right) \right|_{a}^{b}=f\left( b \right)-f\left( a \right)=3\sqrt{5}\Rightarrow 5-f\left( a \right)=3\sqrt{5}\Leftrightarrow f\left( a \right)=5-3\sqrt{5}=\sqrt{5}\left( \sqrt{5}-3 \right)\)
Chọn B.
Tìm tất cả các giá trị \({{y}_{0}}\) để đường thẳng \(y={{y}_{0}}\) cắt đồ thị hàm số \(y={{x}^{4}}-{{x}^{2}}\) tại bốn điểm phân biệt?
TXĐ: D = R. Ta có\(y' = 4{x^3} - 2x = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0 \Rightarrow y = 0\\
x = \frac{1}{{\sqrt 2 }} \Rightarrow y = - \frac{1}{4}\\
x = - \frac{1}{{\sqrt 2 }} \Rightarrow y = - \frac{1}{4}
\end{array} \right.\)
BBT:
Dựa vào BBT ta thấy để đường thẳng \(y={{y}_{0}}\) cắt đồ thị hàm số \(y={{x}^{4}}-{{x}^{2}}\) tại bốn điểm phân biệt \(\Leftrightarrow -\frac{1}{4}<{{y}_{0}}<0\)
Chọn A.
Cho hình lăng trụ ABC.A’B’C’ có mặt đáy ABC là tam giác đều cạnh AB = 2a. Hình chiếu vuông góc của A’ trên (ABC) trùng với trung điểm H của cạnh AB. Biết góc giữa cạnh bên và mặt đáy bằng \({{60}^{0}}\). Tính tang của góc \(\varphi \) giữa hai mặt phẳng (ABC) và (BCC’B’).
Gọi M, N lần lượt là trung điểm của BC và B’C’, E là trung điểm của BM, dễ thấy HE là đường trung bình của tam giác ABM nên HE // AM \(\Rightarrow HE//A'N\)
\(\Rightarrow A';H;E;N\) đồng phẳng.
Ta có: \(BC\bot AM\Rightarrow BC\bot HE;\,\,BC\bot A'H\Rightarrow BC\bot \left( A'HEN \right)\)
\(\Rightarrow BC\bot NE\)
\(\begin{array}{l}
\left\{ \begin{array}{l}
\left( {A'B'C'} \right) \cap \left( {BCC'B'} \right) = BC\\
\left( {A'B'C'} \right) \supset A'N \bot BC\\
\left( {BCC'B'} \right) \supset NE \bot BC
\end{array} \right.\\
\Rightarrow \widehat {\left( {\left( {A'B'C'} \right);\left( {BCC'B'} \right)} \right)} = \widehat {\left( {A'N;NE} \right)} = \widehat {A'NE}\,\,\left( {\widehat {A'NE} < {{90}^0}} \right)\\
\widehat {\left( {\left( {ABC} \right);\left( {BCC'B'} \right)} \right)} = \widehat {\left( {\left( {A'B'C'} \right);\left( {BCC'B'} \right)} \right)} \Rightarrow \widehat {A'NE} = \varphi .
\end{array}\)
HE là đường trung bình của tam giác ABM\(\Rightarrow HE=\frac{1}{2}AM=\frac{1}{2}A'N\) Gọi K là trung điểm của A’N ta dễ dàng chứng minh được A’HEK là hình bình hành \(\begin{align} & \Rightarrow KE//A'H,\,\,KE=A'H \\ & \Rightarrow KE\bot \left( A'B'C' \right)\Rightarrow KE\bot KN \\ \end{align}\)
\(\Rightarrow \Delta EKN\) vuông tại K \(\Rightarrow \tan \varphi =\tan \widehat{A'NE}=\frac{KE}{KN}=\frac{A'H}{\frac{1}{2}A'N}=\frac{2A'H}{A'N}\)
Ta có \(\widehat{\left( A'A;\left( ABC \right) \right)}=\widehat{\left( A'A;HA \right)}=\widehat{A'AH}={{60}^{0}}\Rightarrow A'H=AH.\tan {{60}^{0}}=a\sqrt{3}.\)
Tam giác A’B’C’ đều cạnh 2a \(\Rightarrow A'N=\frac{2a\sqrt{3}}{2}=a\sqrt{3}\)
Vậy \(\tan \varphi =\frac{2A'H}{A'N}=\frac{2.a\sqrt{3}}{a\sqrt{3}}=2\)
Chọn A.
Cho hàm số \(y=\frac{1}{4}{{x}^{4}}-2{{x}^{2}}+2018\). Khẳng định nào sau đây là đúng?
TXĐ: D = R. Ta có:
\(y'={{x}^{3}}-4x=0\Leftrightarrow \left[ \begin{align} & x=0 \\ & x=2 \\ & x=-2 \\ \end{align} \right.;\,\,y''=3{{x}^{2}}-4\Rightarrow y''\left( 0 \right)=-4<0;\,\,y''\left( 2 \right)=y''\left( -2 \right)=8>0\)
\(\Rightarrow x=0\) là điểm cực đại, \(x=\pm 2\) là điểm cực tiểu của hàm số.
Chọn D.
Trong không gian với hệ tọa độ Oxyz, cho hai vectơ \(\overrightarrow{a}=\left( 3;-2;1 \right),\overrightarrow{b}=\left( -2;-1;1 \right)\). Tính \(P=\overrightarrow{a}.\overrightarrow{b}\) ?
\(P=\overrightarrow{a}.\overrightarrow{b}=3.\left( -2 \right)+\left( -2 \right).\left( -1 \right)+1.1=-3\)
Chọn B.
Phương trình \(\sin 2x+\cos x=0\) có tổng các nghiệm trong khoảng \(\left( 0;2\pi \right)\) bằng:
\(\begin{array}{l}
\sin 2x + \cos x = 0 \Leftrightarrow 2\sin x\cos x + \cos x = 0 \Leftrightarrow \cos x\left( {2\sin x + 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = 0\\
\sin x = - \frac{1}{2}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{2} + k\pi \\
x = - \frac{\pi }{6} + k2\pi \\
x = \frac{{7\pi }}{6} + k2\pi
\end{array} \right.\,\,\left( {k \in Z} \right)\mathop \Rightarrow \limits^{x \in \left( {0;2\pi } \right)} \left[ \begin{array}{l}
x = \frac{\pi }{2}\\
x = \frac{{3\pi }}{2}\\
x = \frac{{11\pi }}{6}\\
x = \frac{{7\pi }}{6}
\end{array} \right. \Rightarrow \frac{\pi }{2} + \frac{{3\pi }}{2} + \frac{{11\pi }}{6} + \frac{{7\pi }}{6} = 5\pi
\end{array}\)
Chọn D.
Cho hai số phức \(z=2+3i,z'=3-2i\). Tìm môđun của số phức \(w=z.z'\).
Sử dụng MTCT ta tính được:
\(\Rightarrow w=z.z'=12+5i.\)
\(\Rightarrow \left| w \right|=\sqrt{{{12}^{2}}+{{5}^{2}}}=13\).
Chọn B.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và cạnh bên SB vuông góc với mặt phẳng đáy. Cho biết SB = 3a, AB = 4a, BC = 2a. Tính khoảng cách d từ điểm B đến mặt phẳng (SAC).
Trong mặt phẳng (ABC) kẻ \(BH\bot AC\,\,\left( H\in AC \right)\), trong mặt phẳng (SBH) kẻ \(BK\bot SH\,\,\left( K\in SH \right)\) ta có:
\(\begin{array}{l}
\left\{ \begin{array}{l}
AC \bot BH\\
AC \bot SB
\end{array} \right. \Rightarrow AC \bot \left( {SBH} \right) \Rightarrow AC \bot BK\\
\left\{ \begin{array}{l}
BK \bot AC\\
BK \bot SH
\end{array} \right. \Rightarrow BK \bot \left( {SAC} \right) \Rightarrow d\left( {B;\left( {SAC} \right)} \right) = BK
\end{array}\)
Xét tam giác vuông BAC có: \(\frac{1}{B{{H}^{2}}}=\frac{1}{B{{A}^{2}}}+\frac{1}{B{{C}^{2}}}\)
Xét tam giác vuông SBH có:
\(\begin{align} & \frac{1}{B{{K}^{2}}}=\frac{1}{B{{S}^{2}}}+\frac{1}{B{{H}^{2}}}=\frac{1}{B{{S}^{2}}}+\frac{1}{B{{A}^{2}}}+\frac{1}{B{{C}^{2}}} \\ & \,\,\,\,\,\,\,\,\,\,\,\,=\frac{1}{9{{a}^{2}}}+\frac{1}{16{{a}^{2}}}+\frac{1}{4{{a}^{2}}}=\frac{61}{144{{a}^{2}}}\Rightarrow BK=\frac{12a\sqrt{61}}{61} \\ \end{align}\)
Chọn C.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a. Các cạnh bên của hình chóp đều bằng \(a\sqrt{2}\). Tính góc giữa hai đường thẳng AB và SC.
Ta có: AB // CD \(\Rightarrow \widehat{\left( AB;SC \right)}=\widehat{\left( CD;SC \right)}=\widehat{SCD}\)
Xét tam giác SCD có:
\(S{{C}^{2}}+S{{D}^{2}}=2{{a}^{2}}+2{{a}^{2}}=4{{a}^{2}}=C{{D}^{2}}\Rightarrow \Delta SCD\) vuông tại S, lại có SC = SD (gt) \(\Rightarrow \Delta SCD\) vuông cân tại S \(\Rightarrow \widehat{SCD}={{45}^{0}}.\)
Chọn D.
Cho hình nón có bán kính đáy bằng a, thể tích khối nón tương ứng \(V=2\pi {{a}^{3}}.\) Diện tích xung quanh của hình nón là:
Gọi chiều cao của khối nón là h ta có: \(V=\frac{1}{3}\pi {{r}^{2}}h\Leftrightarrow 2\pi {{a}^{3}}=\frac{1}{3}\pi {{a}^{2}}h\Rightarrow h=6a\)
Gọi l là độ dài đường sinh của khối nón ta có: \(l=\sqrt{{{r}^{2}}+{{h}^{2}}}=\sqrt{{{a}^{2}}+36{{a}^{2}}}=a\sqrt{37}\)
Vậy diện tích xung quanh của khối nón là: \({{S}_{xq}}=\pi rl=\pi .a.a\sqrt{37}=\sqrt{37}\pi {{a}^{2}}\)
Chọn B.
Biết rằng \(I=\int\limits_{0}^{1}{x\cos 2xdx}=\frac{1}{4}\left( a\sin 2+b\cos 2+c \right)\) với \(a,b,c\in Z\). Mệnh đề nào sau đây là đúng?
\(I = \int\limits_0^1 {x\cos 2xdx} \) đặt \(\left\{ \begin{array}{l}
u = x\\
dv = \cos 2xdx
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
du = dx\\
v = \frac{{\sin 2x}}{2}
\end{array} \right. \Rightarrow I = \left. {x.\frac{{\sin 2x}}{2}} \right|_0^1 - \frac{1}{2}\int\limits_0^1 {\sin 2xdx} \)
\(\begin{array}{l}
I = \frac{{\sin 2}}{2} + \frac{1}{2}.\left. {\frac{{\cos 2x}}{2}} \right|_0^1 = \frac{{\sin 2}}{2} + \frac{1}{4}\left( {\cos 2 - 1} \right) = \frac{1}{4}\left( {2\sin 2 + \cos 2 - 1} \right) = \frac{1}{4}\left( {a\sin 2 + b\cos 2 + c} \right)\\
\Rightarrow \left\{ \begin{array}{l}
a = 2\\
b = 1\\
c = - 1
\end{array} \right. \Rightarrow a - b + c = 0
\end{array}\)
Chọn A.
Cho hàm số \(y=f\left( x \right)\) xác định và liên tục trên \(\left( -\infty ;0 \right)\) và \(\left( 0;+\infty \right)\) có bảng biến thiên như sau: Mệnh đề nào dưới đây là đúng?
Hàm số liên tục tại x = 2 \(\Rightarrow \underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)=f\left( 2 \right)\Rightarrow \) x = 2 không là TCĐ của đồ thị hàm số \(\Rightarrow A\) sai.
\(\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f\left( x \right)=-\infty \Rightarrow B\) sai.
Hàm số đồng biến trên \(\left( 3;+\infty \right)\) và nghịch biến trên \(\left( 2;3 \right)\) do đó kết luận: Hàm số đồng biến trên \(\left( 2;+\infty \right)\) sai \(\Rightarrow C\) sai.
Ta thấy hàm số nghịch biến trên \(\left( -3;-2 \right)\Rightarrow f\left( -3 \right)>f\left( -2 \right)\Rightarrow D\) đúng.
Chọn D.
Tìm tất cả các giá trị của x thỏa mãn \(\int\limits_{0}^{x}{\sin 2tdt}=0\)
\(\int\limits_{0}^{x}{\sin 2tdt}=0\Leftrightarrow \left. -\frac{\cos 2t}{2} \right|_{0}^{x}=0\Leftrightarrow -\frac{\cos 2x}{2}+\frac{1}{2}=0\Leftrightarrow \cos 2x=1\Leftrightarrow 2x=k2\pi \Leftrightarrow x=k\pi \,\,\left( k\in Z \right)\)
Chọn A.
Trong không gian với hệ tọa độ Oxy, cho hai đường thẳng \(d:\,\,\frac{x}{1}=\frac{y}{-2}=\frac{z+1}{-1}\) và \(d':\,\,\frac{x-1}{-2}=\frac{y-2}{4}=\frac{z}{2}\). Viết phương trình mặt phẳng (Q) chứa hai đường thẳng d và d’.
Ta có: \({{\overrightarrow{u}}_{d}}=\left( 1;-2;-1 \right);\,\,{{\overrightarrow{u}}_{d'}}=\left( -2;4;2 \right)=-2\left( 1;-2;-1 \right)\Rightarrow d//d'\)
Lấy \(M\left( 0;0;-1 \right)\in d\) ta thấy \(\frac{0-1}{-2}=\frac{0-2}{-4}=\frac{1}{2}\Rightarrow M\in d'\Rightarrow d\equiv d'\Rightarrow \) Có vô số mặt phẳng chứa cả d và d’.
Ta thấy cả 3 đáp án A, B, D, mặt phẳng (Q) đều không chứa điểm M, do đó không chứa d và d’.
Chọn C.
Cho hàm số \(y={{x}^{3}}+{{x}^{2}}-5x+1\). Viết phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x = 2.
Ta có: \(y'=3{{x}^{2}}+2x-5\Rightarrow y'\left( 2 \right)=11;\,\,y\left( 2 \right)=3\)
\(\Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x = 2 là: \(y=11\left( x-2 \right)+3=11x-19\).
Chọn A.
Sân trường THPT Chuyên Hà Giang có một bồn hoa hình tròn có tâm O. Một nhóm học sinh lớp 12 được giao thiết kế bồn hoa, nhóm này chia bồn hoa thành bốn phần, bởi hai đường Parabol có cùng đỉnh O và đối xứng nhau qua O. Hai đường Parabol này cắt đường tròn tại bốn điểm A, B, C, D tạo thành một hình vuông có cạnh bằng 4m (như hình vẽ). Phần diện tích S1, S2 dùng để trồng hoa, phần diện tích S3, S4 dùng để trồng cỏ (Diện tích được làm tròn đến hàng phần trăm). Biết kinh phí trồng hoa là 150.000 đồng/ 1 m2, kinh phí trồng cỏ là 100.000 đồng/1m2. Hỏi cả trường cần bao nhiêu tiền để trồng bồn hoa đó? (Số tiền làm tròn đến hàng chục nghìn).
Gắn hệ trục tọa độ Oxy như hình vẽ, do ABCD là hình vuông cạnh 4m nên ta có \(A\left( -2;2 \right);B\left( 2;2 \right),C\left( 2;-2 \right);D\left( -2;-2 \right)\), từ đó ta dễ dàng viết được phương trình đường tròn là \({{x}^{2}}+{{y}^{2}}=8\) và phương trình 2 parabol là \(y=\frac{1}{2}{{x}^{2}}\) và \(y=-\frac{1}{2}{{x}^{2}}\).
Ta có: S1 là diện tích hình phẳng giới hạn bởi đường tròn \({{x}^{2}}+{{y}^{2}}=8\) và parabol (P): \(y=\frac{1}{2}{{x}^{2}}\)
\(\begin{align}& \Rightarrow {{S}_{1}}+{{S}_{3}}=4\int\limits_{0}^{2}{\left( \sqrt{8-{{x}^{2}}}-\frac{1}{2}{{x}^{2}} \right)dx}=15,23={{S}_{3}}\,\,\left( {{m}^{2}} \right) \\ & {{S}_{2}}+{{S}_{4}}=2\pi {{\left( 2\sqrt{2} \right)}^{2}}-{{S}_{1}}-{{S}_{3}}=35,04\,\left( {{m}^{2}} \right) \\ \end{align}\)
\(\Rightarrow \) Chi phí để trồng bồn hoa đó là: \(15,23.150+35,04.100\approx 5790\) (nghìn đồng).
Chọn D.
Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác đều cạnh bằng 4. Hình chiếu vuông góc của A’ trên (ABC) trùng với tâm O của đường tròn ngoại tiếp tam giác ABC. Gọi M là trung điểm của cạnh AC, tính khoảng cách d giữa hai đường thẳng BM và B’C.
Gọi D là trung điểm của cạnh A’C’ ta có:
A’M // DC; BM // B’D
\(\Rightarrow \left( A'BM \right)//\left( B'CD \right)\)
Mà \(\begin{align} & BM\subset \left( A'BM \right);\,\,B'C\subset \left( B'CD \right) \\ & \Rightarrow d\left( BM;B'C \right)=d\left( \left( A'BM \right);\left( B'CD \right) \right)=d\left( C;\left( A'BM \right) \right) \\ \end{align}\)
Tam giác ABC đều \(\Rightarrow CM\bot BM\)
Mà \(CM\bot A'O\,\left( gt \right)\). Suy ra \(CM\bot \left( A'BM \right)\)
\(\Rightarrow d\left( C;\left( A'BM \right) \right)=CM=\frac{1}{2}AC=2\)
Chọn B.
Cho dãy số \(\left( {{u}_{n}} \right)\) xác định bởi \(\left\{ \begin{align} & {{u}_{1}}=1 \\ & {{u}_{n+1}}=2{{u}_{n}}+5\,\,\left( \forall n\ge 1 \right) \\ \end{align} \right.\). Tìm số nguyên n nhỏ nhất để \({{u}_{n}}>2018.\)
Ta có: u2 = 7, u3 = 19, u4 = 43, u5 = 91.
Dễ thấy
\(\begin{align} & {{u}_{2}}={{u}_{1}}+6 \\ & {{u}_{3}}={{u}_{2}}+12={{u}_{1}}+6+6.2={{u}_{1}}+6\left( 1+2 \right) \\ & {{u}_{4}}={{u}_{3}}+24={{u}_{1}}+6+6.2+6.4={{u}_{1}}+6\left( 1+2+4 \right) \\ & {{u}_{5}}={{u}_{4}}+48={{u}_{1}}+6+6.2+6.4+6.8={{u}_{1}}+6\left( 1+2+4+8 \right) \\ \end{align}\)
Cứ như vậy ta dự đoán \({{u}_{n}}={{u}_{1}}+6\left( 1+2+4+...+{{2}^{n-2}} \right)\)
\(\Rightarrow {{u}_{n}}=1+6.\frac{1-{{2}^{n-1}}}{1-2}=1+6\left( {{2}^{n-1}}-1 \right)={{6.2}^{n-1}}-5\,\,\,\left( \forall n\ge 1 \right)\left( * \right)\)
Dễ dàng chứng minh (*) đúng bằng phương pháp quy nạp.
\({{u}_{n}}>2018\Leftrightarrow {{6.2}^{n-1}}-5>2018\Leftrightarrow {{2}^{n-1}}>\frac{2023}{6}\Leftrightarrow n-1>{{\log }_{2}}\frac{2023}{6}\Leftrightarrow n>1+{{\log }_{2}}\frac{2023}{6}\approx 9,4\)
Vậy số nguyên n nhỏ nhất để \({{u}_{n}}>2018\) là n = 10.
Chọn A.
Tìm giá trị lớn nhất của hàm số \(y=\sqrt{x+1}+\sqrt{3-x}\)
TXĐ: \(D=\left[ -1;3 \right]\)
Ta có:
\(\begin{align} & y'=\frac{1}{2\sqrt{x+1}}-\frac{1}{2\sqrt{3-x}}=0\Leftrightarrow \sqrt{x+1}=\sqrt{3-x}\Leftrightarrow x+1=3-x\Leftrightarrow x=1\in \left[ -1;3 \right] \\ & y\left( 1 \right)=2\sqrt{2};\,\,y\left( -1 \right)=2;\,\,y\left( 3 \right)=\sqrt{2} \\ & \Rightarrow \underset{\left[ -1;3 \right]}{\mathop{\max }}\,f\left( x \right)=2\sqrt{2} \\ \end{align}\)
Chọn B.
Trong mặt phẳng phức gọi A, B, C lần lượt là các điểm biểu diễn các số phức \({{z}_{1}}=\left( 1-i \right)\left( 2+i \right),\,\,{{z}_{2}}=1+3i;\,\,{{z}_{3}}=-1-3i.\) Tam giác ABC là
Ta có: \({{z}_{1}}=\left( 1-i \right)\left( 2+i \right)=3-i\)
\(\Rightarrow A\left( 3;-1 \right),B\left( 1;3 \right),C\left( -1;-3 \right)\)
Ta có:
\(\left\{ \begin{align} & AB=\sqrt{{{\left( 1-3 \right)}^{2}}+{{\left( 3+1 \right)}^{2}}}=2\sqrt{5} \\ & AC=\sqrt{{{\left( -1-3 \right)}^{2}}+{{\left( -3+1 \right)}^{2}}}=2\sqrt{5} \\ & BC=\sqrt{{{\left( -1-1 \right)}^{2}}+{{\left( -3-3 \right)}^{2}}}=2\sqrt{10} \\ \end{align} \right.\Rightarrow A{{B}^{2}}+A{{C}^{2}}=B{{C}^{2}}\)
Vậy tam giác ABC vuông cân tại A.
Chọn B.
Đồ thị hàm số \(y=\frac{2}{x-1}\) có bao nhiêu đường tiệm cận?
TXĐ: \(D=R\backslash \left\{ 1 \right\}\)
Ta có: \(\underset{x\to +\infty }{\mathop{\lim }}\,y=\underset{x\to -\infty }{\mathop{\lim }}\,y=0\Rightarrow y=0\) là TCN của đồ thị hàm số.
\(\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,y=+\infty ;\,\,\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,y=-\infty \Rightarrow x=1\) là TCĐ của đồ thị hàm số.
Vậy đồ thị hàm số \(y=\frac{2}{x-1}\) có 2 đường tiệm cận.
Chọn A.