Câu hỏi Đáp án 2 năm trước 85

Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất P để 3 quyển được lấy ra có ít nhất một quyển sách là toán. 

A. \(P=\frac{2}{7}\)     

B. \(P=\frac{5}{42}\)     

C. \(P=\frac{37}{42}\)  

Đáp án chính xác ✅

D. \(P=\frac{1}{21}\)  

Lời giải của giáo viên

verified HocOn247.com

Số cách lấy ba quyển sách bất kì là \(C_{9}^{3}=84\Rightarrow \left| \Omega  \right|=84\)

Gọi A là biến cố: “3 quyển được lấy ra có ít nhất một quyển sách là toán”, suy ra \(\overline{A}:\) “3 quyển sách lấy ra không có quyển sách toán” \(\Rightarrow \left| \overline{A} \right|=C_{5}^{3}=10\Rightarrow \left| A \right|=84-10=74\)

\(\Rightarrow P\left( A \right)=\frac{\left| A \right|}{\left| \Omega  \right|}=\frac{74}{84}=\frac{37}{42}.\)

Chọn C.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = 3a và SA vuông góc với mặt phẳng đáy. Tính thể tích V của khối chóp S.ABCD. 

Xem lời giải » 2 năm trước 114
Câu 2: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( -1;2;-4 \right)\) và \(B\left( 1;0;2 \right)\). Viết phương trình đường thẳng d đi qua hai điểm A và B. 

Xem lời giải » 2 năm trước 113
Câu 3: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz cho ba mặt phẳng \(\left( P \right):\,\,x-2y+z-1=0\), \(\left( Q \right):\,\,x-2y+z+8=0\) và \(\left( R \right):\,\,x-2y+z-4=0\). Một đường thẳng d thay đổi cắt ba mặt phẳng \(\left( P \right);\left( Q \right);\left( R \right)\) lần lượt tại A, B, C. Đặt \(T=\frac{A{{B}^{2}}}{4}+\frac{144}{AC}\). Tìm giá trị nhỏ nhất của \(T\). 

Xem lời giải » 2 năm trước 109
Câu 4: Trắc nghiệm

Cho hàm số \(y=\frac{2x+1}{1-x}\). Mệnh đề nào sau đây là đúng?

Xem lời giải » 2 năm trước 108
Câu 5: Trắc nghiệm

Biết rằng \(I=\int\limits_{0}^{1}{x\cos 2xdx}=\frac{1}{4}\left( a\sin 2+b\cos 2+c \right)\) với \(a,b,c\in Z\). Mệnh đề nào sau đây là đúng? 

Xem lời giải » 2 năm trước 108
Câu 6: Trắc nghiệm

Phương trình \(\sin 2x+\cos x=0\) có tổng các nghiệm trong khoảng \(\left( 0;2\pi  \right)\) bằng:

Xem lời giải » 2 năm trước 108
Câu 7: Trắc nghiệm

Trong mặt phẳng phức gọi A, B, C lần lượt là các điểm biểu diễn các số phức \({{z}_{1}}=\left( 1-i \right)\left( 2+i \right),\,\,{{z}_{2}}=1+3i;\,\,{{z}_{3}}=-1-3i.\)  Tam giác ABC là 

Xem lời giải » 2 năm trước 107
Câu 8: Trắc nghiệm

Tìm tất cả các giá trị của x thỏa mãn \(\int\limits_{0}^{x}{\sin 2tdt}=0\) 

Xem lời giải » 2 năm trước 105
Câu 9: Trắc nghiệm

Cho hàm số \(y=\frac{1}{4}{{x}^{4}}-2{{x}^{2}}+2018\). Khẳng định nào sau đây là đúng? 

Xem lời giải » 2 năm trước 105
Câu 10: Trắc nghiệm

Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)={{e}^{2x}}\) và \(F\left( 0 \right)=\frac{3}{2}.\) Tính \(F\left( \frac{1}{2} \right).\) 

Xem lời giải » 2 năm trước 104
Câu 11: Trắc nghiệm

Từ các chữ số 0, 1, 2, 3, 4 có thể lập được bao nhiêu số có năm chữ số khác nhau từng đôi một? 

Xem lời giải » 2 năm trước 104
Câu 12: Trắc nghiệm

Cho \({{\log }_{9}}x={{\log }_{12}}y={{\log }_{16}}\left( x+y \right)\). Tính giá trị tỷ số \(\frac{x}{y}\) ?  

Xem lời giải » 2 năm trước 104
Câu 13: Trắc nghiệm

Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\left( m+1 \right){{x}^{3}}+\left( m+1 \right){{x}^{2}}-2x+2\) nghịch biến trên R. 

Xem lời giải » 2 năm trước 103
Câu 14: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a. Các cạnh bên của hình chóp đều bằng \(a\sqrt{2}\). Tính góc giữa hai đường thẳng AB và SC. 

Xem lời giải » 2 năm trước 103
Câu 15: Trắc nghiệm

Cho hàm số \(y=\frac{2x+1}{x+1}\) có đồ thị \(\left( C \right)\). Tìm tất cả các giá trị thực của tham số m sao cho đường thẳng \(d:\,\,y=x+m-1\) cắt \(\left( C \right)\) tại hai điểm phân biệt \(AB\) thỏa mãn \(AB=2\sqrt{3}\). 

Xem lời giải » 2 năm trước 103

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »