Cho số phức \(z\) thỏa mãn \(\left( 3+i \right)\left| z \right|=\frac{-2+14i}{z}+1-3i\). Chọn khẳng định đúng?
A. \(\frac{13}{4}<\left| z \right|<5\)
B. \(1<\left| z \right|<\frac{3}{2}\)
C. \(\frac{3}{2}<\left| z \right|<2\)
D. \(\frac{7}{4}<\left| z \right|<\frac{11}{5}\)
Lời giải của giáo viên
\(\begin{align} & \,\,\,\,\,\left( 3+i \right)\left| z \right|=\frac{-2+14i}{z}+1-3i \\ & \Leftrightarrow \left( 3+i \right)\left| z \right|-1+3i=\frac{-2+14i}{z} \\ & \Leftrightarrow \left( 3\left| z \right|-1 \right)+\left( \left| z \right|+3 \right)i=\frac{-2+14i}{z} \\ \end{align}\)
Lấy mođun hai vế ta có : \(\sqrt{9{{\left| z \right|}^{2}}-6\left| z \right|+1+{{\left| z \right|}^{2}}+6\left| z \right|+9}=\frac{10\sqrt{2}}{\left| z \right|}\)
\( \Leftrightarrow 10{\left| z \right|^2} + 10 = \frac{{200}}{{{{\left| z \right|}^2}}} \Leftrightarrow {\left| z \right|^4} + {\left| z \right|^2} - 20 = 0 \Leftrightarrow {\left| z \right|^2} = 4 \Rightarrow \left| z \right| = 2 \in \left( {\frac{7}{4};\frac{{11}}{5}} \right)\)
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = 3a và SA vuông góc với mặt phẳng đáy. Tính thể tích V của khối chóp S.ABCD.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( -1;2;-4 \right)\) và \(B\left( 1;0;2 \right)\). Viết phương trình đường thẳng d đi qua hai điểm A và B.
Biết rằng \(I=\int\limits_{0}^{1}{x\cos 2xdx}=\frac{1}{4}\left( a\sin 2+b\cos 2+c \right)\) với \(a,b,c\in Z\). Mệnh đề nào sau đây là đúng?
Trong không gian với hệ tọa độ Oxyz cho ba mặt phẳng \(\left( P \right):\,\,x-2y+z-1=0\), \(\left( Q \right):\,\,x-2y+z+8=0\) và \(\left( R \right):\,\,x-2y+z-4=0\). Một đường thẳng d thay đổi cắt ba mặt phẳng \(\left( P \right);\left( Q \right);\left( R \right)\) lần lượt tại A, B, C. Đặt \(T=\frac{A{{B}^{2}}}{4}+\frac{144}{AC}\). Tìm giá trị nhỏ nhất của \(T\).
Cho hàm số \(y=\frac{2x+1}{1-x}\). Mệnh đề nào sau đây là đúng?
Phương trình \(\sin 2x+\cos x=0\) có tổng các nghiệm trong khoảng \(\left( 0;2\pi \right)\) bằng:
Trong mặt phẳng phức gọi A, B, C lần lượt là các điểm biểu diễn các số phức \({{z}_{1}}=\left( 1-i \right)\left( 2+i \right),\,\,{{z}_{2}}=1+3i;\,\,{{z}_{3}}=-1-3i.\) Tam giác ABC là
Cho hàm số \(y=\frac{1}{4}{{x}^{4}}-2{{x}^{2}}+2018\). Khẳng định nào sau đây là đúng?
Tìm tất cả các giá trị của x thỏa mãn \(\int\limits_{0}^{x}{\sin 2tdt}=0\)
Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)={{e}^{2x}}\) và \(F\left( 0 \right)=\frac{3}{2}.\) Tính \(F\left( \frac{1}{2} \right).\)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a. Các cạnh bên của hình chóp đều bằng \(a\sqrt{2}\). Tính góc giữa hai đường thẳng AB và SC.
Từ các chữ số 0, 1, 2, 3, 4 có thể lập được bao nhiêu số có năm chữ số khác nhau từng đôi một?
Cho \({{\log }_{9}}x={{\log }_{12}}y={{\log }_{16}}\left( x+y \right)\). Tính giá trị tỷ số \(\frac{x}{y}\) ?
Cho hàm số \(y=\frac{2x+1}{x+1}\) có đồ thị \(\left( C \right)\). Tìm tất cả các giá trị thực của tham số m sao cho đường thẳng \(d:\,\,y=x+m-1\) cắt \(\left( C \right)\) tại hai điểm phân biệt \(AB\) thỏa mãn \(AB=2\sqrt{3}\).
Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\left( m+1 \right){{x}^{3}}+\left( m+1 \right){{x}^{2}}-2x+2\) nghịch biến trên R.