Câu hỏi Đáp án 2 năm trước 35

Cổng trường Đại học Bách Khoa Hà Nội có hình dạng Parabol, chiều rộng \(8\,m\), chiều cao \(12,5\,m\). Diện tích của cổng là

A. \(100\left( {{{\rm{m}}^{\rm{2}}}} \right)\)

B. \(200\left( {{{\rm{m}}^{\rm{2}}}} \right)\)

C. \(\frac{{100}}{3}\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\)

D. \(\frac{{200}}{3}\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Xét hệ trục tọa độ như hình vẽ mà trục đối xứng của Parabol trùng với trục tung, trục hoành trùng với đường tiếp đất của cổng.

Khi đó Parabol có phương trình dạng \(y=a{{x}^{2}}+c\).

Vì \(\left( P \right)\) đi qua đỉnh \(I\left( 0;12,5 \right)\) nên ta có c=12,5.

\(\left( P \right)\) cắt trục hoành tại hai điểm \(A\left( -4;0 \right)\) và \(B\left( 4;0 \right)\) nên ta có \(0=16a+c\Rightarrow a=\frac{-c}{16}=-\frac{25}{32}\). Do đó \(\left( P \right):y=-\frac{25}{32}{{x}^{2}}+12,5\)

Diện tích của cổng là: \(S=\int\limits_{-4}^{4}{\left( -\frac{25}{32}{{x}^{2}}+12,5 \right)dx}=\frac{200}{3}\,\left( {{m}^{2}} \right)\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y=h\left( x \right)\) có bảng biến thiên sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem lời giải » 2 năm trước 44
Câu 2: Trắc nghiệm

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

Xem lời giải » 2 năm trước 44
Câu 3: Trắc nghiệm

Gọi \(\left( H \right)\) là hình phẳng giới hạn bởi đồ thị hàm số: \(y={{x}^{2}}-4x+4\), trục tung và trục hoành. Xác định k để đường thẳng \(\left( d \right)\) đi qua điểm \(A\left( 0;4 \right)\) có hệ số góc k chia \(\left( H \right)\) thành hai phần có diện tích bằng nhau.

Xem lời giải » 2 năm trước 40
Câu 4: Trắc nghiệm

Tìm các khoảng đồng biến của hàm số \(y={{x}^{3}}+3{{x}^{2}}+1\).

Xem lời giải » 2 năm trước 40
Câu 5: Trắc nghiệm

Cho hình chóp S.ABC có SA=SB=CB=CA, hình chiếu vuông góc của S lên mặt phẳng \(\left( ABC \right)\) trùng với trung điểm I của cạnh AB. Góc giữa đường thẳng SC và mặt phẳng \(\left( ABC \right)\) bằng.

Xem lời giải » 2 năm trước 39
Câu 6: Trắc nghiệm

Gieo một con súc sắc ba lần. Xác suất để được mặt số hai xuất hiện cả ba lần là.

Xem lời giải » 2 năm trước 39
Câu 7: Trắc nghiệm

Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{1-x}{-x+2}\) có phương trình lần lượt là

Xem lời giải » 2 năm trước 39
Câu 8: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu (S) có tâm \(I(\left( 1;-2;3 \right)\) và \(\left( S \right)\) đi qua điểm \(A\left( 3;0;2 \right)\).

Xem lời giải » 2 năm trước 39
Câu 9: Trắc nghiệm

Một khối lăng trụ có chiều cao bằng 2a và diện tích đáy bằng \(2{{a}^{2}}\). Tính thể tích khối lăng trụ

Xem lời giải » 2 năm trước 39
Câu 10: Trắc nghiệm

Cho \(\int\limits_{0}^{\frac{\pi }{4}}{\frac{\sqrt{2+3\tan x}}{1+\cos 2x}dx=a\sqrt{5}+b\sqrt{2},\,\,}\) với \(a,\,\,b\in \mathbb{R}.\) Tính giá trị biểu thức A=a+b.

Xem lời giải » 2 năm trước 39
Câu 11: Trắc nghiệm

Cho đồ thị hàm số y = f(x) có dạng hình vẽ bên. Tính tổng tất cả giá trị nguyên của m để hàm số y = |f(x) -2m + 5| có 7 điểm cực trị.

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Tổng bình phương các nghiệm của phương trình \({\log _{\frac{1}{2}}}\left( {{x^2} - 5x + 7} \right) = 0\) bằng

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, viết phương trình tham số của đường thẳng \(\Delta :\frac{x-4}{1}=\frac{y+3}{2}=\frac{z-2}{-1}.\)

Xem lời giải » 2 năm trước 39
Câu 14: Trắc nghiệm

Cho hai số phức \({{z}_{1}}=3-i\) và \({{z}_{2}}=-1+i\). Phần ảo của số phức \({{z}_{1}}{{z}_{2}}\) bằng

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Số giao điểm của đồ thị hàm số \(y=\frac{x+1}{x-1}\) và đường thẳng y=2 là

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »