Lời giải của giáo viên
Phương trình hoành độ giao điểm \({x^2} = 2x \Leftrightarrow {x^2} - 2x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)
Khi đó, diện tích hình phẳng được xác định bởi công thức
\(S = \int\limits_0^2 {\left| {\left( {{x^2} - 2x} \right)} \right|\,dx} \)\(\,= \left| {\left( {\dfrac{{{x^3}}}{3} - {x^2}} \right)} \right|\left| \begin{array}{l}^2\\_0\end{array} \right. \)\(\,= \left| {\left( {\dfrac{{{2^3}}}{3} - {2^2}} \right)} \right| - 0 = \dfrac{4}{3}\)
Chọn đáp án A.
CÂU HỎI CÙNG CHỦ ĐỀ
Nếu f(1) = 12, f’(x) liên tục và \(\int\limits_1^4 {f'(x)\,dx = 17} \) thì giá trị của f(4) bằng bao nhiêu ?
Trong không gian với hệ tọa độ \(Oxyz\), cho tứ diện \(ABCD\), biết \(A(1;0;1)\),\(B( - 1;1;2)\), \(C( - 1;1;0)\), \(D(2; - 1; - 2)\). Độ dài đường cao \(AH\)của tứ diện \(ABCD\) bằng:
Điều kiện xác định của bất phương trình \({\log _{0,4}}(x - 4) \ge 0\) là:
Trong không gian với hệ trục tọa độ \(Oxyz\)cho ba điểm \(A(1;2; - 1)\), \(B(2; - 1;3)\),\(C( - 2;3;3)\). Tìm tọa độ điểm\(D\) là chân đường phân giác trong góc \(A\) của tam giác\(ABC\)
Cho số phức \(z = {\left( {\dfrac{{1 + 2i}}{{2 - i}}} \right)^{2022}}\). Tìm phát biểu đúng .
Một khối tứ diện đều cạnh \(a\) nội tiếp một hình nón. Thể tích khối nón là:
Thu gọn số phức \(i\left( {2 - i} \right)\left( {3 + i} \right)\) ta được:
Cho hàm số y = f(x) có bảng biến thiên như sau.
Hàm số đã cho nghịch biến trên khoảng nào sau đây ?
Họ nguyên hàm của hàm số \(f(x) = \dfrac{{\sin x}}{{{{\cos }^2}x}}\) là
Giá trị của \({4^{{1 \over 2}{{\log }_2}3 + 3{{\log }_8}5}}\) bằng bao nhiêu?
Nếu \({1 \over 2}\left( {{a^\alpha } + {a^{ - \alpha }}} \right) = 1\) thì giá trị của \(\alpha \) bằng:
Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt {2 - x} ,\,y = x\) xung quanh trục Ox được tính theo công thức nào sau đây:
Đường thẳng y = x – 1 cắt đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x + 1}}\) tại các điểm có tọa độ là: