Đề thi thử THPT QG năm 2022 môn Toán - Trường THPT Việt Thanh

Đề thi thử THPT QG năm 2022 môn Toán

  • Hocon247

  • 50 câu hỏi

  • 90 phút

  • 50 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 151028

Cho  hàm số \(f(x) = 2x + m + {\log _2}[m{x^2} - 2(m - 2)x + 2m - 1]\) ( m là tham số). Tìm tất cả các giá trị của m để hàm số \(f(x)\) xác định với mọi \(x \in R\).

Xem đáp án

Hàm số \(f\left( x \right)\) xác định với mọi \(x \in R\) khi và chỉ khi \(m{x^2} - 2\left( {m - 2} \right)x + 2m - 1 > 0 \forall x \in \mathbb{R}\)

+ Với \(m = 0\) ta có: \(4x - 1 > 0\) (không thỏa mãn)

+ Với \(m \ne 0\), ta có: \(m{x^2} - 2\left( {m - 2} \right)x + 2m - 1 > 0 \forall x \in \mathbb{R}\)

\(\Leftrightarrow \left\{ \begin{array}{l}m > 0\\\Delta ' =  - {m^2} - 3m + 4 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\left[ \begin{array}{l}m > 1\\m <  - 4\end{array} \right.\end{array} \right. \Leftrightarrow m > 1\)

Chọn đáp án B.

Câu 2: Trắc nghiệm ID: 151029

Số nghiệm của phương trình  \({\log _3}({x^3} - 3x) = \dfrac{1}{2}\) là:

Xem đáp án

Điều kiện: \({x^3} - 3x > 0\)

Ta có: \({\log _3}({x^3} - 3x) = \dfrac{1}{2}\)

\(\Leftrightarrow \left( {{x^3} - 3x} \right) = {3^{\dfrac{1}{2}}}\)

Dùng máy tính giải phương trình, so sánh điều kiện phương trình có 1 nghiệm.

Chọn đáp án D.

Câu 3: Trắc nghiệm ID: 151030

Cho số phức z thỏa mãn \(2z - \left( {3 + 4i} \right) = 5 - 2i\). Mô đun của z bằng bao nhiêu ?

Xem đáp án

\(\begin{array}{l}2z - \left( {3 + 4i} \right) = 5 - 2i\\ \Leftrightarrow 2z = 5 - 2i + 3 + 4i\\ \Leftrightarrow 2z = 8 + 2i\\ \Leftrightarrow z = 4 + i\\ \Rightarrow \left| z \right| = \sqrt {{4^2} + 1}  = \sqrt {17} \end{array}\)

Câu 4: Trắc nghiệm ID: 151031

Cho số phức \(z = {\left( {\dfrac{{1 + 2i}}{{2 - i}}} \right)^{2022}}\). Tìm phát biểu đúng .

Xem đáp án

\(\begin{array}{l}z = {\left( {\dfrac{{1 + 2i}}{{2 - i}}} \right)^{2022}}\\\;\; = {\left[ {\dfrac{{\left( {1 + 2i} \right)\left( {2 + i} \right)}}{{{2^2} - {i^2}}}} \right]^{2022}}\\\,\,\, = {\left[ {\dfrac{{2 + 5i + 2{i^2}}}{5}} \right]^{2022}}\\\;\; = {i^{2022}} = {\left( {{i^2}} \right)^{1011}}\\\,\,\, = {\left( { - 1} \right)^{1011}} =  - 1\end{array}\)

Câu 5: Trắc nghiệm ID: 151032

Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất:

Xem đáp án

Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất 3 mặt (ví dụ các đỉnh của hình tứ diện)

Không tồn tại 1 đỉnh nào đó của đa diện nào đó là đỉnh chung của ít hơn 3 mặt

Chọn C.

Câu 6: Trắc nghiệm ID: 151033

Một khối tứ diện đều cạnh \(a\) nội tiếp một hình nón. Thể tích khối nón là:

Xem đáp án

Gọi H là trọng tâm tam giác ACD ta có: \(AH \bot \left( {BCD} \right)\)

Đáy hình nón là đường tròn ngoại tiếp tam giác đều nên bán kính \(r = BH = \dfrac{2}{3}BI = \dfrac{{a\sqrt 3 }}{3}\)

Chiều cao của khối nón là \(h = AH = \sqrt {A{B^2} - B{H^2}}  = \dfrac{{a\sqrt 6 }}{3}\)

Vậy thể tích cần tìm là: \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{{\pi {a^3}\sqrt 6 }}{{27}}\)

Chọn B.

Câu 7: Trắc nghiệm ID: 151034

Đồ thị sau đây là của hàm số nào?

Xem đáp án

Đths có TCĐ: \(x =  - 1\) nên loại A, C.

Đths đi qua điểm \(\left( {0; - 1} \right)\) nên chỉ có D thỏa mãn.

Câu 8: Trắc nghiệm ID: 151035

Đồ tị hàm số \(y = {x^3} - 3{x^2} + 1\) cắt đường thẳng y = m tại ba điểm phân biệt thì tất cả các giá trị tham số m thỏa mãn là

Xem đáp án

\(y = {x^3} - 3{x^2} + 1\)

\(TXD:D = R\)

\(\begin{array}{l}y' = 3{x^2} - 6x\\y' = 0 \Leftrightarrow 3{x^2} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

Từ BBT  ta có đồ thị hàm số \(y = {x^3} - 3{x^2} + 1\) cắt đường thẳng \(y = m\)  tại 3 điểm phân biệt

\( \Rightarrow  - 3 < m < 1\)

Câu 9: Trắc nghiệm ID: 151036

Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt {2 - x} ,\,y = x\) xung quanh trục Ox được tính theo công thức nào sau đây:

Xem đáp án

Điều kiện: \(x \le 2\)

Xét hương trình hoành độ giao điểm ta có:

\(\sqrt {2 - x}  = x \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\2 - x = {x^2}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} + x - 2 = 0\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\\left[ \begin{array}{l}x =  - 2\\x = 1\end{array} \right.\end{array} \right. \Rightarrow x = 1\)

Khi đó, thể tích khối tròn xoay cần tính được xác được bởi công thức: \(V = \pi \int\limits_0^1 {{x^2}\,dx + \pi \int\limits_1^2 {\left( {2 - x} \right)\,dx} } \)

Chọn đáp án D.

Câu 10: Trắc nghiệm ID: 151037

Họ nguyên hàm của hàm số \(f(x) = \dfrac{{\sin x}}{{{{\cos }^2}x}}\) là

Xem đáp án

Ta có: \(\int {\dfrac{{\sin x}}{{{{\cos }^2}x}}} \,dx =  - \int {\dfrac{1}{{{{\cos }^2}x}}} \,d\left( {\cos x} \right)\)\(\, = \dfrac{1}{{\cos x}} + C.\)

Chọn đáp án D.

Câu 11: Trắc nghiệm ID: 151038

Hình tứ diện đều có mấy mặt phẳng đối xứng?

Xem đáp án

Tứ diện đều có mặt phẳng đối xứng là mặt phẳng đi qua 1 cạnh và trung điểm cạnh đối diện. Vì tứ diện đều có 6 cạnh nên có 6 mặt phẳng đối xứng.

Chọn A.

Câu 12: Trắc nghiệm ID: 151039

Một hình nón \(\left( N \right)\) sinh bởi một tam giác đều cạnh \(a\) khi quay quanh một đường cao. Diện tích xung quanh của hình nón đó bằng

Xem đáp án

Hình nón có bán kính đáy \(r = \dfrac{a}{2}\) ; độ dài đường sinh \(l = a\)

Diện tích xung quanh hình nón là:

\({S_{xq}} = \pi rl = \pi .\dfrac{a}{2}.a = \dfrac{{\pi {a^2}}}{2}\)

Chọn B.

Câu 13: Trắc nghiệm ID: 151040

Trong không gian với hệ trục tọa độ \(Oxyz\), cho ba điểm \(A(1;2; - 1)\), \(B(2; - 1;3)\),\(C( - 2;3;3)\). Điểm\(M\left( {a;b;c} \right)\) là đỉnh thứ tư của hình bình hành \(ABCM\), khi đó \(P = {a^2} + {b^2} - {c^2}\) có giá trị bằng

Xem đáp án

\(M(x;y;z)\), \(ABCM\) là hình bình hành thì

\(\overrightarrow {AM}  = \overrightarrow {BC}  \Rightarrow \left\{ \begin{array}{l}x - 1 =  - 2 - 2\\y - 2 = 3 + 1\\z + 1 = 3 - 3\end{array} \right.\)

\(\Rightarrow M( - 3;6; - 1) \Rightarrow P = 44.\).

Câu 14: Trắc nghiệm ID: 151041

Đường thẳng y = x – 1 cắt đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x + 1}}\) tại các điểm có tọa độ là:

Xem đáp án

Xét phương trình hoành độ \(\begin{array}{l}x - 1 = \dfrac{{2x - 1}}{{x + 1}},x \ne  - 1\\ \Leftrightarrow {x^2} - 1 = 2x - 1 \Leftrightarrow {x^2} - 2x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

Hoành độ giao điểm của đường thẳng \(y = x - 1\) và \(y = \dfrac{{2x - 1}}{{x + 1}}\) là \(\left( {0, - 1} \right),\left( {2,1} \right)\)

Câu 15: Trắc nghiệm ID: 151042

Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số \(y = \dfrac{{{x^3}}}{ 3} - 2{x^2} + 3x - 5\).

Xem đáp án

\(TXD:D = R\)

\(\begin{array}{l}y = \dfrac{{{x^3}}}{3} - 2{x^2} + 3x - 5\\y' = {x^2} - 4x + 3\\y' = 0 \Leftrightarrow {x^2} - 4x + 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\end{array}\) 

Từ  BBT xct=3, yct=-5

\(y'\left( 3 \right) = 0\) nên phương trình tiếp tuyến tại \(\left( {3; - 5} \right)\) là:

\(y = 0\left( {x + 3} \right) - 5\) hay \(y =  - 5\)

Đường thẳng này song song với trục hoành.

Chọn D.

Câu 16: Trắc nghiệm ID: 151043

Giá trị của \({4^{{1 \over 2}{{\log }_2}3 + 3{{\log }_8}5}}\) bằng bao nhiêu?

Xem đáp án

Ta có: \({4^{\dfrac{1}{2}{{\log }_2}3 + 3{{\log }_8}5}} = {4^{{{\log }_2}\sqrt 3  + {{\log }_2}5}} \)\(\,= {4^{{{\log }_2}5\sqrt 3 }} = {2^{2{{\log }_2}\sqrt {75} }}= {2^{{{\log }_2}75}} = 75.\)

Chọn đáp án C.

Câu 17: Trắc nghiệm ID: 151044

Tính đạo hàm của hàm số \(y = {2^{2x + 3}}\).

Xem đáp án

Ta có: \(y = {2^{2x + 3}} \)

\(\Rightarrow y' = {\left( {{2^{2x + 3}}} \right)^\prime }\)\(\, = {2^{2x + 3}}.\ln 2.2\)

Chọn đáp án D.

Câu 18: Trắc nghiệm ID: 151045

Diện tích hình phẳng giới hạn bởi đồ thị các hàm số sau đây \(y = {x^2},\,\,y = 2x\) là: 

Xem đáp án

Phương trình hoành độ giao điểm \({x^2} = 2x \Leftrightarrow {x^2} - 2x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)

Khi đó, diện tích hình phẳng được xác định bởi công thức

\(S = \int\limits_0^2 {\left| {\left( {{x^2} - 2x} \right)} \right|\,dx}  \)\(\,= \left| {\left( {\dfrac{{{x^3}}}{3} - {x^2}} \right)} \right|\left| \begin{array}{l}^2\\_0\end{array} \right. \)\(\,= \left| {\left( {\dfrac{{{2^3}}}{3} - {2^2}} \right)} \right| - 0 = \dfrac{4}{3}\)

Chọn đáp án A.

Câu 19: Trắc nghiệm ID: 151046

Nếu f(1) = 12, f’(x) liên tục và \(\int\limits_1^4 {f'(x)\,dx = 17} \) thì giá trị của f(4) bằng bao nhiêu ?

Xem đáp án

Ta có: \(\int\limits_1^4 {f'\left( x \right)\,dx = 17}  \)

\(\Rightarrow f\left( x \right)\left| {_1^4} \right. = 17 \Leftrightarrow f\left( 4 \right) - f\left( 1 \right) = 17\)

\( \Rightarrow f\left( 4 \right) = 17 + f\left( 1 \right) = 17 + 12 = 29.\)

Chọn đáp án A.

Câu 20: Trắc nghiệm ID: 151047

Số phức nghịch đảo của số phức \(z = 1 - \sqrt 3 i\) là:

Xem đáp án

\(z = 1 - i\sqrt 3 \)

Số phức liên hợp của z là \(\dfrac{1}{z} = \dfrac{1}{{1 - i\sqrt 3 }} = \dfrac{{1 + i\sqrt 3 }}{{1 - 3{i^2}}} \)\(\;= \dfrac{1}{4} + \dfrac{{\sqrt 3 }}{4}i\)

Câu 21: Trắc nghiệm ID: 151048

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án

Các hình tứ diện đều, lập phương, bát diện đều là các khối đa diện đều nên chúng là đa diện lồi.

Hình tạo bởi hai tứ diện đều ghép với nhau có thể là đa diện lồi hoặc không phải là đa diện lồi

⇒ Mệnh đề “Hình tạo bởi hai tứ diện đều ghép với nhau là đa diện lồi” là mệnh đề sai

Chọn A.

Câu 22: Trắc nghiệm ID: 151049

Hình chữ nhật \(ABCD\) có \(AB = 3{\rm{ cm }},AD = 5{\rm{ cm}}\). Thể tích tích khối trụ hình thành được khi quay hình chữ nhật \(ABCD\) quanh đoạn \(AB\) bằng 

Xem đáp án

Khối trụ được tạo thành có bán kính đáy r = 5, chiều cao h = 3

Thể tích khối trụ là: \(V = \pi {r^2}.h = \pi {.5^2}.3 = 75\pi \left( {c{m^3}} \right)\)

Chọn B.

Câu 23: Trắc nghiệm ID: 151050

Trong không gian với hệ trục tọa độ \(Oxyz\)cho ba điểm \(A(1;2; - 1)\), \(B(2; - 1;3)\),\(C( - 2;3;3)\). Tìm tọa độ điểm\(D\) là chân đường phân giác trong góc \(A\) của tam giác\(ABC\)

Xem đáp án

Ta có \(AB = \sqrt {26} ,AC = \sqrt {26}  \Rightarrow \) tam giác \(ABC\)cân ở \(A\) nên \(D\) là trung điểm \(BC\) \( \Rightarrow D(0;1;3).\)

Câu 24: Trắc nghiệm ID: 151051

Nếu \({\log _7}x = 8{\log _7}a{b^2} - 2{\log _7}{a^3}b\,\,(a,b > 0)\) thì \(x\) bằng :

Xem đáp án

Ta có: \({\log _7}x = 8{\log _7}a{b^2} - 2{\log _7}{a^3}b\,\)\(\, = {\log _7}{a^8}{b^{16}} - {\log _7}{a^6}{b^2}\)\(\, = {\log _7}\left( {\dfrac{{{a^8}{b^{16}}}}{{{a^6}{b^2}}}} \right) = \log \left( {{a^2}{b^{14}}} \right)\)

Chọn đáp án C.

Câu 25: Trắc nghiệm ID: 151052

Tính \(K = {\left( {{1 \over {16}}} \right)^{ - 0,75}} + {\left( {{1 \over 8}} \right)^{ - {4 \over 3}}}\), ta được:

Xem đáp án

Ta có: \(K = {\left( {\dfrac{1}{{16}}} \right)^{ - 0,75}} + {\left( {\dfrac{1}{8}} \right)^{ - \dfrac{4}{3}}} \)\(\,= \dfrac{1}{{\sqrt[4]{{{{\left( {\dfrac{1}{{16}}} \right)}^3}}}}} + \dfrac{1}{{\sqrt[3]{{{{\left( {\dfrac{1}{8}} \right)}^4}}}}} \)\(\,= 8 + 16 = 24.\)

Chọn đáp án B.

Câu 26: Trắc nghiệm ID: 151053

Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{1 - 4x} }{ {2x - 1}}\).

Xem đáp án

\(\begin{array}{l}y = \dfrac{{1 - 4x}}{{2x - 1}}(x \ne \dfrac{1}{2})\\\mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{1 - 4x}}{{2x - 1}} =  - 2\end{array}\)

Suy ra TCN y=-2

Câu 27: Trắc nghiệm ID: 151054

Đường cong trong hình dưới đây là đồ thị của hàm số nào ?

Xem đáp án

Có \(\mathop {\lim }\limits_{x \to  + \infty } y =  - \infty \) nên \(a < 0\), loại B.

Đồ thị hàm số đi qua điểm \(\left( {0;1} \right)\) nên chỉ có C thỏa mãn.

Câu 28: Trắc nghiệm ID: 151055

Khối mười hai mặt đều là khối đa diện đều loại:

Xem đáp án

Khối mười hai mặt đều thuộc loại \(\left\{ {5;3} \right\}\).

Chọn C.

Câu 29: Trắc nghiệm ID: 151056

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông cân tại \(A\) , với \(AB = a\). Góc giữa \(A'B\) và mặt phẳng đáy bằng \(45^\circ \). Diện tích xung quanh của hình  trụ ngoại tiếp lăng trụ \(ACB.A'B'C'\) bằng

Xem đáp án

Góc giữa A’B và mặt đáy là \(\widehat {A'BA} = {45^o}\) nên tam giác A’AB vuông cân tại A.

Do đó: AA’ = a

Ta có: \(BC = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

Hình trụ ngoại tiếp lăng trụ có bán kính \(r = \dfrac{{a\sqrt 2 }}{2}\) , chiều cao \(h = a\)

Diện tích xung quanh của hình trụ là: \({S_{xq}} = 2\pi rh = 2\pi .\dfrac{{a\sqrt 2 }}{2}.a = \sqrt 2 \pi {a^2}\)

Chọn D.

Câu 30: Trắc nghiệm ID: 151057

Trong không gian với hệ toạ độ \(Oxyz\), cho các điểm: A(-1,3,5), B(-4,3,2), C(0,2,1). Tìm tọa độ điểm \(I\) tâm đường tròn ngoại tiếp tam giác \(ABC\)

Xem đáp án

Ta có: Tam giác đều. Do đó tâm \(I\) của đường tròn ngoại tiếp là trọng tâm của nó. Kết luận: \(I\left( { - \dfrac{5}{3};\dfrac{8}{3};\dfrac{8}{3}} \right)\)

Câu 31: Trắc nghiệm ID: 151058

Cho f(x), g(x)  là các hàm liên tục trên [a ; b]. Lựa chọn phương án đúng.

Xem đáp án

Khi Cho \(f\left( x \right),g\left( x \right)\) là các hàm liên tục trên \(\left[ {a;b} \right]\) ta luôn có: \(\left| {\int\limits_a^b {f\left( {x\,} \right)dx} } \right| \le \int\limits_a^b {\left| {f\left( x \right)} \right|\,dx} \)

Chọn đáp án B.

Câu 32: Trắc nghiệm ID: 151059

Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta được:

Xem đáp án

Ta có:

\(\begin{array}{l}\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \\ = \int {\left( {\dfrac{1}{{{{\sin }^2}x}} - \dfrac{2}{{{{\cos }^2}x}}} \right)\,dx} \\ = \int {\dfrac{1}{{{{\sin }^2}x}}\,dx - 2\int {\dfrac{1}{{{{\cos }^2}x}}dx} } \\ =  - \cot x - 2\tan x + C\end{array}\)

Chọn đáp án A.

Câu 33: Trắc nghiệm ID: 151060

Biết nghịch đảo của số phức z là liên hợp của nó. Chọn mệnh đề đúng

Xem đáp án

Đặt  z = a + bi       \(a,b \in \mathbb{Z}\)

\(\begin{array}{l}\dfrac{1}{z} = \overline z \\ \Rightarrow \dfrac{1}{{a + bi}} = a - bi\\ \Rightarrow 1 = \left( {a + bi} \right)\left( {a - bi} \right)\\ \Leftrightarrow 1 = {a^2} - {b^2}{i^2}\\ \Rightarrow 1 = {a^2} + {b^2}\\ \Rightarrow 1 = \left| z \right|\end{array}\)

Câu 34: Trắc nghiệm ID: 151061

Xem đáp án

Đặt z = a + bi  \(a,b \in \mathbb{Z}\)

\(\begin{array}{l}z - \overline z  = a + bi - \left( {a - bi} \right) = 2bi\\z + \overline z  = a + bi + \left( {a - bi} \right) = 2a\\\left| {{z^2}} \right| = \left| {{{\left( {a + bi} \right)}^2}} \right| = \left| {{a^2} - {b^2} + 2abi} \right|\\\,\,\,\,\,\,\,\,\, = \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + 4{a^2}{b^2}} \\\,\,\,\,\,\,\,\,\, = \sqrt {{a^4} + 2{a^2}{b^2} + {b^4}} \\\,\,\,\,\,\,\,\,\, = \sqrt {{{\left( {{a^2} + {b^2}} \right)}^2}}  = {a^2} + {b^2}\\z\overline z  = (a + bi)\left( {a - bi} \right)\\\,\,\,\,\,\,\, = {a^2} - {b^2}{i^2} = {a^2} + {b^2}\end{array}\)

Câu 35: Trắc nghiệm ID: 151062

Phép vị tự tỉ số \(k > 0\) biến khối chóp có thể tích \(V\) thành khối chóp có thể tích \(V'\). Khi đó:

Xem đáp án

Phép vị tự tỉ số \(k > 0\) biến khối chóp có thể tích \(V\) thành khối chóp có thể tích \(V'\). Khi đó \(\dfrac{{V'}}{V} = {k^3}\).

Chọn D.

Câu 36: Trắc nghiệm ID: 151063

Trong không gian\(Oxyz\), cho ba vectơ \(\overrightarrow a  = \left( { - 1,1,0} \right);\overrightarrow b  = (1,1,0);\overrightarrow c  = \left( {1,1,1} \right)\). Trong các mệnh đề sau, mệnh đề nào đúng:

Xem đáp án

\(\cos (\overrightarrow b ,\overrightarrow c ) = \dfrac{{\overrightarrow b .\overrightarrow c }}{{\left| {\overrightarrow b } \right|.\left| {\overrightarrow c } \right|}}\)

Câu 37: Trắc nghiệm ID: 151064

Trong không gian với hệ tọa độ \(Oxyz\), cho tứ diện \(ABCD\), biết \(A(1;0;1)\),\(B( - 1;1;2)\), \(C( - 1;1;0)\), \(D(2; - 1; - 2)\). Độ dài đường cao \(AH\)của tứ diện \(ABCD\) bằng:

Xem đáp án

Sử dụng công thức \(h = \dfrac{{\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right|}}{{\left| {\overrightarrow {AB} .\overrightarrow {AC} } \right|}} = \dfrac{1}{{\sqrt {13} }}.\)

Câu 38: Trắc nghiệm ID: 151065

Cho  hàm số y = f(x) có bảng biến thiên như sau.

Hàm số đã cho nghịch biến trên khoảng nào sau đây ?

Xem đáp án

Hàm số nghịch biến trên \(\left( {0;1} \right)\) và \(( - \infty ;-1)\)

Câu 39: Trắc nghiệm ID: 151066

Tìm tất cả các giá trị của m để dồ thị hàm số \(y = {x^3} - 3x + 2\) cắt đường thẳng y = m – 1 tại ba điểm phân biệt .

Xem đáp án

\(y = {x^3} - 3x + 2\)

\(TXD:D = R\)

\(\begin{array}{l}y' = 3{x^2} - 3\\y' = 0 \Leftrightarrow 3{x^2} - 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\end{array}\)

Từ BBT suy ra đồ thị hàm số \(y = {x^3} - 3x + 2\) cắt đường thẳng \(y = m - 1\) tại 3 điểm phân biệt

\( \Rightarrow 0 < m - 1 < 4 \Leftrightarrow 1 < m < 5\)

Câu 40: Trắc nghiệm ID: 151067

Nếu \({1 \over 2}\left( {{a^\alpha } + {a^{ - \alpha }}} \right) = 1\) thì giá trị của \(\alpha \) bằng:

Xem đáp án

Ta có: \(\dfrac{1}{2}\left( {{a^\alpha } + {a^{ - \alpha }}} \right) = 1 \)

\(\Leftrightarrow {a^\alpha } + {a^{ - \alpha }} = 2 \)

\(\Leftrightarrow {a^\alpha } + \dfrac{1}{{{a^\alpha }}} = 2\)

\( \Leftrightarrow {\left( {{a^\alpha }} \right)^2} - 2{a^\alpha } + 1 = 0 \)

\(\Leftrightarrow {a^\alpha } = 1 \Leftrightarrow \alpha  = 0.\)

Chọn đáp án D.

Câu 41: Trắc nghiệm ID: 151068

Gọi x1, x2 là hai nghiệm của phương trình \({4^x} - {8.2^x} + 4 = 0\). Giá trị của biểu thức P=x1 + x2 bằng :

Xem đáp án

Ta có: \({4^x} - {8.2^x} + 4 = 0 \)

\(\Leftrightarrow {\left( {{2^x}} \right)^2} - 8.\left( {{2^x}} \right) + 4 = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}{2^x} = 4 + 2\sqrt 3 \\{2^x} = 4 - 2\sqrt 3 \end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l}x = {\log _2}\left( {4 + 2\sqrt 3 } \right)\\x = {\log _2}\left( {4 - 2\sqrt 3 } \right)\end{array} \right.\)

Khi đó \(P = {x_1} + {x_2} \)\(\,= {\log _2}\left( {4 + 2\sqrt 3 } \right) + {\log _2}\left( {4 - 2\sqrt 3 } \right) \)\(\,= {\log _2}\left( {16 - 12} \right) = 2\)

Chọn đáp án D.

Câu 42: Trắc nghiệm ID: 151069

Thu gọn số phức \(i\left( {2 - i} \right)\left( {3 + i} \right)\) ta được: 

Xem đáp án

\(i(2 - i)(3 + i) = i\left( {6 - i - {i^2}} \right) \)\(\,= i\left( {7 - i} \right) = 1 + 7i\)

Câu 44: Trắc nghiệm ID: 151071

Thiết diện qua trục của một hình trụ là hình vuông cạnh \(2a\). Gọi \({S_1}\) và \({S_2}\) lần lượt là diện tích xung quanh, diện tích toàn phần của hình trụ. Chọn kết luận đúng trong các kết luận sau:

Xem đáp án

Hình trụ có bán kính \(r = a\) , chiều cao \(h = 2a\)

Diện tích xung quanh của hình trụ là: \({S_1} = 2\pi rh = 2\pi a.2a = 4\pi {a^2}\)

Diện tích toàn phần của hình trụ là: \({S_2} = {S_1} + 2\pi {r^2} = 4\pi {a^2} + 2\pi {a^2} = 6\pi {a^2}\)

Do đó: \(3{S_1} = 2{S_2}\)

Chọn B.

Câu 45: Trắc nghiệm ID: 151072

Cho hình chóp tam giác \(S.ABC\) với \(I\) là trọng tâm của đáy \(ABC\). Đẳng thức nào sau đây là đẳng thức đúng

Xem đáp án

\(\left. \begin{array}{l}\overrightarrow {SI}  = \overrightarrow {SA}  + \overrightarrow {AI} \\\overrightarrow {SI}  = \overrightarrow {SB}  + \overrightarrow {BI} \\\overrightarrow {SI}  = \overrightarrow {SC}  + \overrightarrow {CI} \end{array} \right\}\\ \Rightarrow 3\overrightarrow {SI}  = \overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SB}  + \left( {\overrightarrow {AI}  + \overrightarrow {BI}  + \overrightarrow {CI} } \right)\)

Vì I là trọng tâm tam giác \(ABC \Rightarrow \overrightarrow {AI}  + \overrightarrow {BI}  + \overrightarrow {CI}  = \overrightarrow 0 \)

\(\Rightarrow \overrightarrow {SI}  = \dfrac{1}{3}\left( {\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC} } \right).\)

Câu 46: Trắc nghiệm ID: 151073

Phương trình mặt cầu tâm \(I\left( {2;4;6} \right)\) nào sau đây tiếp xúc với trục Ox:

Xem đáp án

Mặt cầu tâm \(I\left( {2;4;6} \right)\), bán kính R và tiếp xúc trục Ox\( \Leftrightarrow R = d\left( {I;Ox} \right)\)

\( \Leftrightarrow R = \sqrt {y_I^2 + z_I^2}  = \sqrt {52} \). Vậy \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 52.\)

Lựa chọn đáp án C.

Câu 47: Trắc nghiệm ID: 151074

Điều kiện xác định của bất phương trình \({\log _{0,4}}(x - 4) \ge 0\) là:

Xem đáp án

Điều kiện xác định: \(x - 4 > 0 \Leftrightarrow x > 4\)

Chọn đáp án B.

Câu 48: Trắc nghiệm ID: 151075

Nếu \(F(x) = \left( {a{x^2} + bx + c} \right){e^{ - x}}\) là một nguyên hàm của hàm số \(f(x) = \left( { - 2{x^2} + 7x - 4} \right){e^{ - x}}\) thì (a , b ,c) bằng bao nhiêu ?

Xem đáp án

Ta có: \(\int {\left( { - 2{x^2} + 7x - 4} \right){e^{ - x}}} \,dx \)\(\,=  - \int {\left( { - 2{x^2} + 7x - 4} \right)d} \left( {{e^{ - x}}} \right)\)

 

Đặt \(\left\{ \begin{array}{l}u =  - 2{x^2} + 7x - 4\\dv = d\left( {{e^{ - x}}} \right)\end{array} \right. \)\(\,\Rightarrow \left\{ \begin{array}{l}du = \left( { - 4x + 7} \right)\,dx\\v = {e^{ - x}}\end{array} \right.\)

Khi đó:

\(\begin{array}{l}\int {\left( { - 2{x^2} + 7x - 4} \right){e^{ - x}}} \,dx\\ =  - \int {\left( { - 2{x^2} + 7x - 4} \right)d} \left( {{e^{ - x}}} \right)\\ =  - \left[ {\left( { - 2{x^2} + 7x - 4} \right){e^{ - x}} - \int {{e^{ - x}}\left( { - 4x + 7} \right)dx} } \right]\end{array}\)

\( =  - \left( { - 2{x^2} + 7x - 4} \right){e^{ - x}} + \int {{e^{ - x}}\left( { - 4x + 7} \right)dx} \)

\( =  - \left( { - 2{x^2} + 7x - 4} \right){e^{ - x}} - \int {\left( { - 4x + 7} \right)d\left( {{e^{ - x}}} \right)} \)\( =  - \left( { - 2{x^2} + 7x - 4} \right){e^{ - x}} - \left[ {\left( { - 4x + 7} \right){e^{ - x}} + 4\int {{e^{ - x}}dx} } \right]\)

\( =  - \left( { - 2{x^2} + 7x - 4} \right){e^{ - x}} + \left( {4x - 7} \right){e^{ - x}} - 4\left( { - {e^{ - x}}} \right) + C\)

\( = \left( {2{x^2} - 3x + 1} \right){e^{ - x}} + C\)

Chọn đáp án B.

Câu 49: Trắc nghiệm ID: 151076

Gọi \({z_1}\,,\,{z_2}\) là hai nghiệm của phương trình \({z^2} - 2z + 2 = 0\). Tính giá trị của \(P = \left| {\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}}} \right|\).

Xem đáp án

\(\)\(\begin{array}{l}{z^2} - 2z + 2 = 0\\ \Leftrightarrow \left( {{z^2} - 2z + 1} \right) + 1 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} + 1 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} =  - 1\\ \Rightarrow {\left( {z - 1} \right)^2} = {i^2}\\ \Leftrightarrow \left[ \begin{array}{l}z - 1 = i\\z - 1 =  - i\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{z_1} = 1 + i\\{z_2} = 1 - i\end{array} \right.\end{array}\)

Có \(\begin{array}{l}P = \left| {\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}}} \right| = \left| {\dfrac{1}{{1 + i}} + \dfrac{1}{{1 - i}}} \right|\\\,\,\,\,\, = \left| {\dfrac{{1 - i + 1 + i}}{{\left( {1 + i} \right)\left( {1 - i} \right)}}} \right| = \left| {\dfrac{1}{{1 - {i^2}}}} \right| = 1\end{array}\)

Câu 50: Trắc nghiệm ID: 151077

Đồ thị hàm số nào sau đây có tâm đối xứng là điểm I(1 ; -2 ) ?

Xem đáp án

Đáp án A: tâm đối xứng là giao hai đường tiệm cận \(x =  - 2\) và \(y = 1\) nên có tọa độ \(\left( { - 2;1} \right)\)( loại).

Đáp án B:

\(\begin{array}{l}y' = 6{x^2} - 12x + 1\\y'' = 12x - 12 = 0 \Leftrightarrow x = 1\\ \Rightarrow y = {2.1^3} - {6.1^2} + 1 + 1 =  - 2\end{array}\)

\( \Rightarrow I\left( {1; - 2} \right)\) là tâm đối xứng của đồ thị.

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »