Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt {2 - x} ,\,y = x\) xung quanh trục Ox được tính theo công thức nào sau đây:
A. \(V = \pi \int\limits_0^2 {\left( {2 - x} \right)\,dx + \pi \int\limits_0^2 {{x^2}\,dx} } \).
B. \(V = \pi \int\limits_0^2 {\left( {2 - x} \right)\,dx} \).
C. \(V = \pi \int\limits_0^1 {x\,dx + \pi \int\limits_1^2 {\sqrt {2 - x} \,dx} } \).
D. \(V = \pi \int\limits_0^1 {{x^2}\,dx + \pi \int\limits_1^2 {\left( {2 - x} \right)\,dx} } \).
Lời giải của giáo viên
Điều kiện: \(x \le 2\)
Xét hương trình hoành độ giao điểm ta có:
\(\sqrt {2 - x} = x \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\2 - x = {x^2}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} + x - 2 = 0\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\\left[ \begin{array}{l}x = - 2\\x = 1\end{array} \right.\end{array} \right. \Rightarrow x = 1\)
Khi đó, thể tích khối tròn xoay cần tính được xác được bởi công thức: \(V = \pi \int\limits_0^1 {{x^2}\,dx + \pi \int\limits_1^2 {\left( {2 - x} \right)\,dx} } \)
Chọn đáp án D.
CÂU HỎI CÙNG CHỦ ĐỀ
Nếu f(1) = 12, f’(x) liên tục và \(\int\limits_1^4 {f'(x)\,dx = 17} \) thì giá trị của f(4) bằng bao nhiêu ?
Trong không gian với hệ tọa độ \(Oxyz\), cho tứ diện \(ABCD\), biết \(A(1;0;1)\),\(B( - 1;1;2)\), \(C( - 1;1;0)\), \(D(2; - 1; - 2)\). Độ dài đường cao \(AH\)của tứ diện \(ABCD\) bằng:
Điều kiện xác định của bất phương trình \({\log _{0,4}}(x - 4) \ge 0\) là:
Trong không gian với hệ trục tọa độ \(Oxyz\)cho ba điểm \(A(1;2; - 1)\), \(B(2; - 1;3)\),\(C( - 2;3;3)\). Tìm tọa độ điểm\(D\) là chân đường phân giác trong góc \(A\) của tam giác\(ABC\)
Cho số phức \(z = {\left( {\dfrac{{1 + 2i}}{{2 - i}}} \right)^{2022}}\). Tìm phát biểu đúng .
Một khối tứ diện đều cạnh \(a\) nội tiếp một hình nón. Thể tích khối nón là:
Thu gọn số phức \(i\left( {2 - i} \right)\left( {3 + i} \right)\) ta được:
Họ nguyên hàm của hàm số \(f(x) = \dfrac{{\sin x}}{{{{\cos }^2}x}}\) là
Diện tích hình phẳng giới hạn bởi đồ thị các hàm số sau đây \(y = {x^2},\,\,y = 2x\) là:
Giá trị của \({4^{{1 \over 2}{{\log }_2}3 + 3{{\log }_8}5}}\) bằng bao nhiêu?
Cho hàm số y = f(x) có bảng biến thiên như sau.
Hàm số đã cho nghịch biến trên khoảng nào sau đây ?
Nếu \({1 \over 2}\left( {{a^\alpha } + {a^{ - \alpha }}} \right) = 1\) thì giá trị của \(\alpha \) bằng:
Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta được: