Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=\frac{2x+1}{x-2}\); tiệm cận ngang và hai đường thẳng x=3;x=e+2 được tính bằng
A. \(\int\limits_3^{e + 2} {\frac{{2x + 1}}{{x - 2}}dx} \)
B. \(\int\limits_3^{e + 2} {\frac{5}{{x - 2}}dx} \)
C. \(\left. {\ln \left| {x - 2} \right|} \right|_3^{e + 2}\)
D. 5 - e
Lời giải của giáo viên
Tiệm cận ngang của đồ thị hàm số là y=2.
Ta có diện tích hình phẳng được tính bởi công thức: \(S=\int\limits_{3}^{e+2}{\left| \frac{2x+1}{x-2}-2 \right|dx}\]\[=\int\limits_{3}^{e+2}{\left| \frac{5}{x-2} \right|dx}\)
Vì trên \(\left[ 3;e+2 \right]\) thì \(g\left( x \right)=\frac{5}{x-2}\) luôn dương, nên ta có thể phá giá trị tuyệt đối và chọn đáp án B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối nón có bán kính đáy bằng r, chiều cao h. Thể tích V của khối nón là:
Tập nghiệm của bất phương trình \({{\log }_{2}}x<3\) là
Trong không gian cho tam giác ABC vuông tại A có \(AB=\sqrt{3}\) và \(\widehat{ACB}={{30}^{\text{o}}}\). Tính thể tích V của khối nón nhận được khi quay tam giác ABC quanh cạnh AC.
Cho khối nón có đường sinh bằng 5 và bán kính đáy bằng 3. Thể tích khối nón bằng
Tập nghiệm của bất phương trình \({\log ^2}x - 13\log x + 36 > 0\) là:
Trong không gian Oxyz cho mặt phẳng \((P)\text{ }:x+y+z-2=0\). Điểm nào sau đây thuộc mặt phẳng (P)?
Trong mặt phẳng Oxy, cho các điểm A, B như hình vẽ bên. Trung điểm của đoạn thẳng AB biểu diễn số phức
Viết phương trình mặt phẳng qua \(M\left( 1;-1;2 \right),N\left( 3;1;4 \right)\) và song song với trục Ox
Trong không gian với hệ trục Oxyz, cho tam giác ABC có \(A\left( -1;3;2 \right), B\left( 2;0;5 \right)\) và \(C\left( 0;-2;1 \right)\). Phương trình trung tuyến AM của tam giác ABC là.
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên:
Khẳng định nào sau đây là khẳng định đúng:
Cho hình thang ABCD vuông tại A và D, AD=CD=a, AB=2a. Quay hình thang ABCD quanh đường thẳng CD. Thể tích khối tròn xoay thu được là:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
Gọi \({{z}_{1}}\) là nghiệm phức có phần ảo âm thỏa mãn: \({{z}^{2}}+6z+13=0\). Tìm phần ảo của số phức \(w={{\left( i+1 \right)}^{2}}{{z}_{1}}\).