Đồ thị của hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\) tiếp xúc với trục hoành tại gốc tọa độ và cắt đường thẳng x = 1 tại điểm có tung độ bằng 3 khi
A. \(a = b = 0,c = 2.\)
B. \(a = c = 0,b = 2.\)
C. \(a = 2,b = c = 0.\)
D. \(a = 2,b = 1,c = 0.\)
Lời giải của giáo viên
Ta có: \(f'\left( x \right) = 3{x^2} + 2ax + b\)
Đồ thị hàm số tiếp xúc với trục hoành tại gốc tọa độ O(0;0) nên \(\left\{ \begin{array}{l}
f\left( 0 \right) = 0\\
f'\left( 0 \right) = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
c = 0\\
b = 0
\end{array} \right.\)
Đồ thị hàm số đi qua điểm A(1;3) nên \(3 = 1 + a \Leftrightarrow a = 2.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Hệ số của x5 trong khai triển \({\left( {1 - 2x - 3{x^2}} \right)^9}\) là
Tìm giá trị nhỏ nhất của hàm số \(y = {x^2} - 1\) trên đoạn [-3;2]?
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Tính khoảng cách giữa hai đường thẳng AB' và CD'
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Gọi M, N, P lần lượt là tủng điểm các cạnh SB, BC, CD. Tính thể tích khối tứ diện CMNP.
Biết số tự nhiên n thỏa mãn \(C_n^1 + 2\frac{{C_n^2}}{{C_n^1}} + ... + n\frac{{C_n^n}}{{C_n^{n - 1}}} = 45\) . Tính \(C_{n + 4}^n\) ?
Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; … Tìm công thức số hạng tổng quát un của cấp số cộng?
Cho hàm số \(y = \sqrt {{x^2} - 1} .\) Mệnh đề nào dưới đây đúng?
Tất cả các nghiệm của phương trình \({\mathop{\rm tanx}\nolimits} = cotx\) là
Cho hàm số \(y = \frac{{{x^2} + x}}{{x - 2}}\) có đồ thị (C). Phương trình tiếp tuyến tại điểm A(1;-2) của (C) là
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình vẽ sau:
Khi đó số nghiệm của phương trình \(2\left| {f\left( {2x - 3} \right)} \right| - 5 = 0\) là:
Số tiệm cận ngang của đồ thị hàm số \(y = \frac{{\left| x \right| - 2018}}{{x + 2019}}\) là
Tung hai con súc sắc 3 lần độc lập với nhau. Tính xác suất để có đúng một lần tổng số chấm xuất hiện trên hai con súc sắc bằng 6. Kết quả làm tròn đến 3 ba chữ số ở phần thập phân)
Tất cả các giá trị của tham số m để hàm số \(y = \left( {m - 1} \right){x^4}\) đạt cực đại tại x = 0 là
Cho cấp số nhân (un) thỏa mãn \(\left\{ \begin{array}{l}
{u_1} - {u_3} + {u_5} = 65\\
{u_1} + {u_7} = 325
\end{array} \right..\) Tính u3.
Giá trị cực đại yCĐ của hàm số \(y = {x^3} - 12x + 20\) là