Câu hỏi Đáp án 2 năm trước 21

Giả sử số lượng một bầy ruồi tại thời điểm t (ngày) so với thời điểm t=0 là \(P(t)={{P}_{0}}{{e}^{kt}},\,\,\,{{P}_{0}}\) là số lượng một bầy ruồi tại thời điểm t=0, k là hằng số tăng trưởng của bầy ruồi. Biết số lượng bầy ruồi tăng lên gấp đôi sau 9 ngày. Hỏi sau bao nhiêu ngày bầy ruồi có 1600 con, biết \({{P}_{0}}=100\)?

A. 16 ngày

B. 27 ngày

C. 36 ngày

Đáp án chính xác ✅

D. 45 ngày

Lời giải của giáo viên

verified HocOn247.com

Ta có \(2{P_0} = {P_0}{e^{9k}} \Leftrightarrow 2 = {e^{9k}} \Leftrightarrow k = \frac{{\ln 2}}{9}.\)

\(1600 = 100{e^{kt}} \Leftrightarrow {e^{kt}} = 16 \Leftrightarrow t = \frac{{\ln 16}}{k} = 36.\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x+2y+3z+5=0\). Vectơ nào sau đây là một vectơ pháp tuyến của (P) ?

Xem lời giải » 2 năm trước 42
Câu 2: Trắc nghiệm

Thể tích khối cầu có bán kính R = 2a bằng 

Xem lời giải » 2 năm trước 41
Câu 3: Trắc nghiệm

Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm \(A\left( 1;3;-4 \right)\) và \(B\left( -1;2;2 \right)\). Viết phương trình mặt phẳng trung trực \(\left( \alpha  \right)\) của đoạn thẳng AB. 

Xem lời giải » 2 năm trước 40
Câu 4: Trắc nghiệm

Số phức liên hợp của  số phức z=5-4i là

Xem lời giải » 2 năm trước 40
Câu 5: Trắc nghiệm

Cho số phức \(z=a+bi,(a,b\in \mathbb{R})\) thỏa mãn \(3z+5\bar{z}=5-2i\). Tính giá trị của biểu thức \(P=\frac{a}{b}.\)

Xem lời giải » 2 năm trước 40
Câu 6: Trắc nghiệm

Với  a,b là hai số thực dương và khác 1 thỏa mãn \({{\log }_{\sqrt{a}}}\left( a\sqrt[{}]{b} \right)=1\). Mệnh đề nào sau đây đúng ?

Xem lời giải » 2 năm trước 40
Câu 7: Trắc nghiệm

Số giao điểm của đồ thị hàm số \(y=\frac{x-2}{x+2}\) với đường thẳng y=4x+1 là

Xem lời giải » 2 năm trước 40
Câu 8: Trắc nghiệm

Tính diện tích xung quanh \({{S}_{xq}}\) của hình nón có bán kính đáy r=3 và độ dài đường sinh l=5.

Xem lời giải » 2 năm trước 39
Câu 9: Trắc nghiệm

Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây.

Hàm số đó là hàm số nào?

Xem lời giải » 2 năm trước 38
Câu 10: Trắc nghiệm

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, \(SA\bot \left( ABCD \right)\) và \(SA=a\sqrt{6}\). Tính góc \(\varphi \) giữa đường thẳng SC và mặt phẳng \(\left( ABCD \right).\)

Xem lời giải » 2 năm trước 38
Câu 11: Trắc nghiệm

Cho khối lăng trụ \(ABC.{A}'{B}'{C}'\) có diện tích đáy bằng \(\frac{\sqrt{3}{{a}^{2}}}{2}\) và chiều cao h=a. Thể tích khối lăng trụ đã cho bằng

Xem lời giải » 2 năm trước 37
Câu 12: Trắc nghiệm

Thể tích của khối lập phương cạnh 3cm bằng

Xem lời giải » 2 năm trước 37
Câu 13: Trắc nghiệm

Hỏi có tất cả bao giá trị nguyên của tham số \(m\in \left[ -10;10 \right]\) để hàm số \(y=2{{x}^{3}}+{{x}^{2}}-mx+2m-1\) nghịch biến trên đoạn \(\left[ -1;1 \right]\)?

Xem lời giải » 2 năm trước 35
Câu 14: Trắc nghiệm

Cho hai số dương x,y thỏa \({{\log }_{3}}\left( 3{{x}^{2}}+6x+9 \right)-{{y}^{2}}+2={{3}^{{{y}^{2}}}}-{{x}^{2}}-2x\) với \(x\in \left( 0;600 \right)\). Hỏi có bao nhiêu số nguyên y thỏa mãn phương trình trên ?

Xem lời giải » 2 năm trước 34
Câu 15: Trắc nghiệm

Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số \(y = \sqrt {{x^2} - 2x + 5} \) trên [0;3]. Giá trị của biểu thức M + m bằng

Xem lời giải » 2 năm trước 34

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »