Lời giải của giáo viên
\(y' = f'\left( x \right) = 6{x^2} - 12x = 0\) \( \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2 \end{array} \right.\)
Mà \(f\left( -1 \right)=-7, f\left( 1 \right)=-3, f\left( 0 \right)=1\).
Do đó \(\underset{\left[ -1;\,1 \right]}{\mathop{\max }}\,f\left( x \right)=\max \left\{ f\left( -1 \right);\,f\left( 1 \right);\,f\left( 0 \right) \right\}=1\) khi x=0.
\(\underset{\left[ -1;\,1 \right]}{\mathop{\min }}\,f\left( x \right)=\min \left\{ f\left( -1 \right);\,f\left( 1 \right);\,f\left( 0 \right) \right\}=-7\) khi x=-1
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức \(z=3+i\). Phần thực của số phức \(2z+1+i\) bằng
Cho parabol \(\left( P \right):y={{x}^{2}}\) và một đường thẳng d thay đổi cắt \(\left( P \right)\) tại hai điểm A, B sao cho AB=2018. Gọi S là diện tích hình phẳng giới hạn bởi \(\left( P \right)\) và đường thẳng d. Tìm giá trị lớn nhất \({{S}_{max}}\) của S.
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau.
Đồ thị hàm số \(y=\left| f\left( x-2017 \right)+2018 \right|\) có bao nhiêu điểm cực trị?
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình bên. Tìm số cực trị của hàm số \(y=f\left( x \right)\)
Cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y+2z-3=0\). Tính bán kính R của mặt cầu \(\left( S \right)\).
Tính tích phân \(I=\int\limits_{0}^{1}{{{8}^{x}}\text{d}x}\).
Tất cả nguyên hàm của hàm số \(f\left( x \right)=\frac{1}{2x+3}\) là
Trong không gian với hệ tọa độ Oxy, cho hai điểm \(A\left( 1\,;\,1\,;\,0 \right), B\left( 0\,;\,3\,;\,3 \right)\). Khi đó
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\) và \(M\left( {{x}_{0}};{{y}_{0}};{{z}_{0}} \right)\in \left( S \right)\) sao cho \(A={{x}_{0}}+2{{y}_{0}}+2{{z}_{0}}\) đạt giá trị nhỏ nhất. Khi đó \({{x}_{0}}+{{y}_{0}}+{{z}_{0}}\) bằng
Cho hình chóp S.ABCD có đáy là hình chữ nhật có cạnh AB=2,AD=4. Cạnh bên SA=2 và vuông góc với đáy (tham khảo hình vẽ). Thể tích V của khối chóp S.ABCD bằng
Tìm nguyên hàm của hàm số \(f(x)={{\text{e}}^{x}}+2\sin x\).
Cho hình chóp \(S.ABC\text{D}\) có đáy là hình thoi cạnh a, góc ABC bằng \({{60}^{0}}\). SA vuông góc với mặt phẳng \(\left( ABCD \right), SA=\frac{a\sqrt{3}}{3}\) (minh họa như hình bên). Góc giữa đường thẳng SC và mặt phẳng \(\left( ABCD \right)\) bằng
Tính môđun số phức nghịch đảo của số phức \(z={{\left( 1-2i \right)}^{2}}\).
Giải phương trình \({{\log }_{3}}\left( x-1 \right)=2\).