Gieo ngẫu nhiên một con súc sắc cân đối, đồng chất liên tiếp 3 lần. Xác suất để được mặt có 6 chấm chỉ xuất hiện trong lần gieo thứ 3 là bao nhiêu?
A. \({\left( {\frac{1}{6}} \right)^3}\).
B. \({\left( {\frac{5}{6}} \right)^2}.\left( {\frac{1}{6}} \right)\).
C. \(\left( {\frac{5}{6}} \right).{\left( {\frac{1}{6}} \right)^2}\).
D. Khác.
Lời giải của giáo viên
Gọi Ai : “lần gieo thứ i xuất hiện mặt 6 chấm.”, với \(i \in \left\{ {1;2;3} \right\}\) Þ \(P\left( {{A_i}} \right) = \frac{1}{6}\) Þ \(P\left( {\overline {{A_i}} } \right) = \frac{5}{6}\)
A : “mặt có 6 chấm chỉ xuất hiện trong lần gieo thứ 3”
\(P\left( A \right) = P\left( {\overline {{A_1}} {\rm{.}}\overline {{A_2}} {\rm{.}}{A_3}} \right) = P\left( {\overline {{A_1}} } \right).P\left( {\overline {{A_2}} } \right).P\left( {{A_3}} \right) = {\left( {\frac{5}{6}} \right)^2}.\left( {\frac{1}{6}} \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm số các chỉnh hợp chập \(k\) của một tập hợp gồm \(n\) phần tử \((1 \le k \le n).\)
Tính tổng các hệ số trong khai triển sau \({\left( {1 - 2x} \right)^{2018}}.\)
Cho chuyển động thẳng xác định bởi phương trình \(S = {t^3} + 3{t^2} - 9t + 27\), trong đó \(t\) tính bằng giây \(\left( s \right)\) và \(S\) được tính bằng mét \(\left( {\rm{m}} \right)\). Gia tốc của chuyển động tại thời điểm vận tốc triệt tiêu là bao nhiêu?
Cho hàm số \(y = {x^4} - 2{x^2}\). Mệnh đề nào dưới đây là đúng?
Gọi \({x_1};{x_2}\) là các nghiệm của phương trình: \(12{x^2} - 6mx + {m^2} - 4 + \frac{{12}}{{{m^2}}} = 0\left( 1 \right)\). Tìm m sao cho \(x_1^3 + x_2^3\) đạt giá trị lớn nhất.
Tìm \(m\) để hàm số \(y = \frac{{m{x^2} + 6x - 2}}{{x + 2}}\) nghịch biến trên \(\left[ {1; + \infty } \right).\)
Cho tứ diện \(ABCD\). \(G\) là trọng tâm tam giác \(BCD\). Tìm giao tuyến của hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {GAB} \right).\)
Trong măt phẳng \(Oxy\) cho điểm \(M\left( { - 2;4} \right)\). Phép vị tự tâm \(O\) tỉ số \(k = - 2\) biến điểm \(M\) thành điểm nào trong các điểm sau?
Cho dãy số \(\left( {{u_n}} \right)\) : \(\frac{1}{2}; - \frac{1}{2}; - \frac{3}{2}; - \frac{5}{2};...{\rm{ }}\) Khẳng định nào sau đây sai?
Tổng tất cả các nghiệm của phương trình \(\frac{{\left( {2\cos x - 1} \right)\left( {\sin 2x - \cos x} \right)}}{{\sin x - 1}} = 0\) trên \(\left[ {0;\,\frac{\pi }{2}} \right]\) là \(T\) bằng bao nhiêu?
Cho hàm số \(y = {x^2} + 5x + 4\) có đồ thị \(\left( C \right)\). Tìm tiếp tuyến của \(\left( C \right)\) tại các giao điểm của \(\left( C \right)\) với trục \(Ox\).
Cho \(k\) là một số nguyên dương, trong các mệnh đề sau đây mệnh đề nào sai?