Gọi \({x_1};{x_2}\) là các nghiệm của phương trình: \(12{x^2} - 6mx + {m^2} - 4 + \frac{{12}}{{{m^2}}} = 0\left( 1 \right)\). Tìm m sao cho \(x_1^3 + x_2^3\) đạt giá trị lớn nhất.
A. \(m = - 2\sqrt 3 \).
B. \(m = 2\).
C. \(m = 2\sqrt 3 \).
D. Không tồn tại \(m\).
Lời giải của giáo viên
+ Phương trình \(\left( 1 \right)\) có nghiệm khi và chỉ khi \(\Delta ' \ge 0 \Leftrightarrow 9{m^2} - 12\left( {{m^2} - 4 + \frac{{12}}{{{m^2}}}} \right) \ge 0\)
\( \Leftrightarrow 4 \le {m^2} \le 12 \Leftrightarrow m \in \left[ { - 2\sqrt 3 ; - 2} \right] \cup \left[ {2;2\sqrt 3 } \right]\).
Theo định lý Vi-ét, phương trình \(\left( 1 \right)\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn:\(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{m}{2}\\{x_1}{x_2} = \frac{1}{{12}}\left( {{m^2} - 4 + \frac{{12}}{{{m^2}}}} \right)\end{array} \right.\).
\( \Rightarrow x_1^3 + x_2^3 = {\left( {x_1^{} + x_2^{}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = \frac{m}{2} - \frac{3}{{2m}}\).
+ Xét hàm số \(y = \frac{m}{2} - \frac{3}{{2m}}\) có:
TXĐ: \(D = \left[ { - 2\sqrt 3 ; - 2} \right] \cup \left[ {2;2\sqrt 3 } \right]\).
\(y' = \frac{1}{2} + \frac{3}{{2{m^2}}} > 0,\forall m \in D\).
Lập bảng biến thiến.
Dựa vào bảng biến thiên ta suy ra \({\left( {x_1^3 + x_2^3} \right)_{\max }} = \frac{{3\sqrt 3 }}{4}\) đạt được khi \(m = 2\sqrt 3 \).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp tứ giác đều có tất cả các cạnh bằng nhau, đường cao của một mặt bên là \(a\sqrt 3 .\) Thể tích V của khối chóp đó là bao nhiêu?
Cho hàm số \(y = {x^2} + 5x + 4\) có đồ thị \(\left( C \right)\). Tìm tiếp tuyến của \(\left( C \right)\) tại các giao điểm của \(\left( C \right)\) với trục \(Ox\).
Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng nào?
Cho hình chóp \(S.ABCD\), tứ giác \(ABCD\) đáy là hình thang vuông tại \(A\) và \(B\), \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Biết \(AB = 2CD = 2AD\). Mệnh đề nào sau đây sai?
Tổng tất cả các nghiệm của phương trình \(\frac{{\left( {2\cos x - 1} \right)\left( {\sin 2x - \cos x} \right)}}{{\sin x - 1}} = 0\) trên \(\left[ {0;\,\frac{\pi }{2}} \right]\) là \(T\) bằng bao nhiêu?
Trong măt phẳng \(Oxy\) cho điểm \(M\left( { - 2;4} \right)\). Phép vị tự tâm \(O\) tỉ số \(k = - 2\) biến điểm \(M\) thành điểm nào trong các điểm sau?
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}m\frac{{{x^2} - 4}}{{{x^2} - 3x + 2}} + {n^2},\,\,\,\,khi\,\,x > 2\\nx - {m^2} - 5,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x \le 2\end{array} \right.\) Tìm \(m,\,\,n\) để hàm số có giới hạn tại \(x = 2.\)
Nếu \(P(A).P(B) = P(A \cap B)\) thì \(A,B\) là 2 biến cố như thế nào?
Cho lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(G,G'\) lần lượt là trọng tâm của tam giác \(ABC\) và \(A'B'C'\), \(O\) là trung điểm của \(GG'\). Thiết diện tạo bởi mặt phẳng \(\left( {ABO} \right)\) với lăng trụ là một hình thang. Tính tỉ số \(k\) giữa đáy lớn và đáy bé của thiết diện.
Cho hàm số \(y = {x^4} - 2{x^2}\). Mệnh đề nào dưới đây là đúng?
Cho tứ diện \(ABCD\). \(G\) là trọng tâm tam giác \(BCD\). Tìm giao tuyến của hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {GAB} \right).\)
Phương trình \(\sin \left( {3x + \frac{\pi }{3}} \right) = - \frac{{\sqrt 3 }}{2}\) có bao nhiêu nghiệm thuộc khoảng \(\left( {0;\frac{\pi }{2}} \right)\)?