Gọi M, N là hai điểm di động trên đồ thị (C) của hàm số \(y = - {x^3} + 3{x^2} - x + 4\) sao cho tiếp tuyến của (C) tại M và N luôn song song với nhau. Hỏi khi M, N thay đổi, đường thẳng MN luôn đi qua nào trong các điểm dưới đây ?
A. Điểm \(N\left( { - 1; - 5} \right).\)
B. Điểm \(M\left( {1; - 5} \right).\)
C. Điểm \(Q\left( {1;5} \right).\)
D. Điểm \(P\left( { - 1;5} \right).\)
Lời giải của giáo viên
Gọi \(M\left( {{x_M};{y_M}} \right),N\left( {{x_N};{y_N}} \right)\)
Do \(M,N \in \left( C \right)\) nên \(M\left( {{x_M}; - x_M^3 + 3x_M^2 - {x_M} + 4} \right),N\left( {{x_N}, - x_N^3 + 3x_N^2 - {x_N} + 4} \right)\)
Theo giả thiết tiếp tuyến của (C) tại M và N luôn song song với nhau nên ta có:
\(\begin{array}{l}
y'\left( {{x_M}} \right) = y'\left( {{x_N}} \right) \Leftrightarrow - 3{x_M}^2 + 6{x_M} - 1 = - 3{x_N}^2 + 6{x_N} - 1 \Leftrightarrow - 3{x_M}^2 + 6{x_M} + 3{x_N}^2 - 6{x_N} = 0\\
\Leftrightarrow \left( {{x_N} - {x_M}} \right)\left( {{x_N} + {x_M} - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
{x_N} - {x_M} = 0\\
{x_N} + {x_M} = 2
\end{array} \right.
\end{array}\)
Do M và N phân biệt nên \({x_N} \ne {x_M}\) , suy ra \(x_N+x_M=2\)
Ta có
\(\begin{array}{l}
{y_M} + {y_N} = - \left( {{x_M}^3 + {x_N}^3} \right) + 3\left( {{x_M}^2 + {x_N}^2} \right) - \left( {{x_M} + {x_N}} \right) + 8\\
= - \left[ {{{\left( {{x_M} + {x_N}} \right)}^3} - 3\left( {{x_M} + {x_N}} \right){x_M}{x_N}} \right] + 3\left[ {{{\left( {{x_M} + {x_N}} \right)}^2} - 2{x_M}{x_N}} \right] - \left( {{x_M} + {x_N}} \right) + 8\\
= - \left[ {{2^3} - 6{x_M}{x_N}} \right] + 3\left[ {{2^2} - 2{x_M}{x_N}} \right] - 2 + 8 = 10
\end{array}\)
Từ đây suy ra đường thẳng MN luôn đi qua điểm cố định là trung điểm Q(1;5) của MN
CÂU HỎI CÙNG CHỦ ĐỀ
Với \(n\) là số tự nhiên lớn hơn 2, đặt \({S_n} = \frac{1}{{C_3^3}} + \frac{1}{{C_4^3}} + \frac{1}{{C_5^4}} + ... + \frac{1}{{C_n^3}}\). Tính \(S_n\)
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M( - 3;1)\) và đường tròn \(\left( C \right):{x^2} + {y^2} - 2x - 6y + 6 = 0\). Gọi \({T_1},{T_2}\) là các tiếp điểm của các tiếp tuyến kẻ từ M đến (C). Tính khoảng cách từ O đến đường thẳng \({T_1}{T_2}.\)
Với \(a\) là số thực dương bất kì, mệnh đề nào dưới đây đúng?
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng \(a\), góc giữa mặt bên và mặt đáy bằng \(60^0\).
Tính diện tích xung quanh của hình nón đỉnh S, đáy là hình tròn ngoại tiếp tam giác ABC
Cho \(f\left( x \right) = x.{{\rm{e}}^{ - 3x}}\). Tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là
Phương trình: \({\log _3}\left( {3x - 2} \right) = 3\) có nghiệm là
Cho \(a, b\) là các số thực dương thỏa mãn \(b>1\) và \(\sqrt a \le b < a\) . Tìm giá trị nhỏ nhất của biểu thức \(P = {\log _{\frac{a}{b}}}a + 2{\log _{\sqrt b }}\left( {\frac{a}{b}} \right).\)
Tập nghiệm của bất phương trình \(2{\log _2}\left( {x - 1} \right) \le {\log _2}\left( {5 - x} \right) + 1\) là
Tính thể tích của khối lăng trụ tam giác đều có tất cả các cạnh bằng \(a\).
Tập xác định của \(y = \ln \left( { - {x^2} + 5x - 6} \right)\) là
Cho biểu thức \(P = \sqrt[3]{{x.\sqrt[4]{{{x^3}\sqrt x }}}}\), với \(x > 0.\) Mệnh đề nào dưới đây đúng ?
Trong mặt phẳng với hệ tọa độ Oxy giả sử điểm \(A(a;b)\) thuộc đường thẳng \(d:\,\,x - y - 3 = 0\) và cách \(\Delta :\,\,2x - y + 1 = 0\) một khoảng bằng \(\sqrt 5 .\) Tính \(P=ab\) biết \(a>0\)
Trong mặt phẳng với hệ tọa độ Oxy, cho elip \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Điểm \(M \in \left( E \right)\) sao cho \(\widehat {{F_1}M{F_2}} = {90^0}.\) Tìm bán kính đường tròn nội tiếp tam giác \(M{F_1}{F_2}.\)
Giá trị nhỏ nhất của hàm số \(y = \frac{{2\sin x + 3}}{{\sin x + 1}}\)trên \(\left[ {0;\frac{\pi }{2}} \right]\) là
Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\) có 5 điểm cực trị