Lời giải của giáo viên
Hàm số \(y = {x^3} - 3{x^2} - 9x + 1\) xác định và liên tục trên R, nên trên đoạn [0;4] hàm số luôn xác định và liên tục.
Ta có: \(y' = 3{x^2} - 6x - 9 \Leftrightarrow \left[ \begin{array}{l}
x = - 1 \notin (0;4)\\
x = 3 \in (0;4)
\end{array} \right.\)
Khi đó: \(f\left( 0 \right) = 1;f\left( 3 \right) = - 26;f\left( 4 \right) = - 19.\)
So sánh các giá trị trên ta được: \(M = \mathop {Maxy}\limits_{[0;4]} = 1;m = \mathop {Miny}\limits_{[0;4]} = - 26.\)
Suy ra: m + 2M = -26 + 2 = -24.
Vậy m + 2M = -24.
CÂU HỎI CÙNG CHỦ ĐỀ
Hệ số của x5 trong khai triển \({\left( {1 - 2x - 3{x^2}} \right)^9}\) là
Cho hàm số \(y = \frac{{{x^2} + x}}{{x - 2}}\) có đồ thị (C). Phương trình tiếp tuyến tại điểm A(1;-2) của (C) là
Cho hàm số \(y = \sqrt {{x^2} - 1} .\) Mệnh đề nào dưới đây đúng?
Tìm giá trị nhỏ nhất của hàm số \(y = {x^2} - 1\) trên đoạn [-3;2]?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Gọi M, N, P lần lượt là tủng điểm các cạnh SB, BC, CD. Tính thể tích khối tứ diện CMNP.
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Tính khoảng cách giữa hai đường thẳng AB' và CD'
Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; … Tìm công thức số hạng tổng quát un của cấp số cộng?
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình vẽ sau:
Khi đó số nghiệm của phương trình \(2\left| {f\left( {2x - 3} \right)} \right| - 5 = 0\) là:
Biết số tự nhiên n thỏa mãn \(C_n^1 + 2\frac{{C_n^2}}{{C_n^1}} + ... + n\frac{{C_n^n}}{{C_n^{n - 1}}} = 45\) . Tính \(C_{n + 4}^n\) ?
Tất cả các nghiệm của phương trình \({\mathop{\rm tanx}\nolimits} = cotx\) là
Cho tập hợp \(A = \left\{ {0,1,2,3,4,5,6} \right\}.\) Từ tập A lập được bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau và nhỏ hơn 4012
Gọi \({x_1},{x_2},{x_3}\) là các cực trị của hàm số \(y = - {x^4} + 4{x^2} + 2019.\) Tính tổng \({x_1} + {x_2} + x{}_3\) bằng?
Cho cấp số nhân (un) thỏa mãn \(\left\{ \begin{array}{l}
{u_1} - {u_3} + {u_5} = 65\\
{u_1} + {u_7} = 325
\end{array} \right..\) Tính u3.
Số tiệm cận ngang của đồ thị hàm số \(y = \frac{{\left| x \right| - 2018}}{{x + 2019}}\) là
Tất cả các giá trị của tham số m để hàm số \(y = \left( {m - 1} \right){x^4}\) đạt cực đại tại x = 0 là