Gọi S là tập các giá trị nguyên m sao cho hàm số \(y = \frac{{{x^3}}}{3} + \left( {{m^2} + 2018m - 1} \right)\frac{{{x^2}}}{2} - 2019m\) tăng trên \(\left( { - \infty ; - 2018} \right).\) Tổng tất cả các phần tử của tập hợp S là:
A. -2039189
B. -2039190.
C. -2019.
D. - 2018
Lời giải của giáo viên
\(\begin{array}{l}
y = \frac{{{x^3}}}{3} + \left( {{m^2} + 2018m - 1} \right)\frac{{{x^2}}}{2} - 2019m\\
y' = {x^2} + \left( {{m^2} + 2018m - 1} \right)x
\end{array}\)
Hàm số tăng trên \(\left( { - \infty ;2018} \right) \Leftrightarrow y' \ge 0,\forall x \in \left( { - \infty ; - 2018} \right)\)
\(\begin{array}{l}
\Leftrightarrow {x^2} + \left( {{m^2} + 2018m - 1} \right)x \ge 0,\forall x \in \left( { - \infty ; - 2018} \right)\\
\Leftrightarrow x \le - {m^2} - 2018m + 1,\forall x \in \left( { - \infty ; - 2018} \right)\\
\Leftrightarrow - {m^2} - 2018m + 1 \ge - 2018\\
\Leftrightarrow - 2019 \le m \le 1
\end{array}\)
Vậy tổng tát cả các phần tử của tập hợp S là
\( - 2019 - 2018 - 2017 - ... + 0 + 1 = 2021.\frac{{1 - 2019}}{2} = - 2039189.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình vẽ:
Số nghiệm của phương trình \(f(x)=-1\) là?
Cho hàm số \(y = \frac{{ - x + 2}}{{x - 1}}\) có đồ thị (C) và điểm \(A\left( {a;1} \right).\) Biết \(a = \frac{m}{n}\) (với mọi \(m,n \in N\) và \(\frac{m}{n}\) tối giản) là giá
Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh đều bằng a. Khoảng cách từ A đến mặt phẳng (A'BC) bằng:
Trên trục tọa độ Oxy, cho hình vuông ABCD. Điểm M thuộc cạnh CD sao cho \(\overrightarrow {MC} = 2\overrightarrow {DM} ,N(0;2019)\) là trung điểm của cạnh BC, K là giao điểm của hi đường thẳng AM và BD. Biết đường thẳng AM có phương trình \(x - 10y + 2018 = 0.\) Khoảng cách từ gốc tọa độ O đến đường thẳng NK bằng:
Cho hàm số \(y=f(x)\) có bảng biến thiên
Số tiệm cận đứng của đồ thị hàm số \(y = \frac{{2018}}{{f(x)}}\) là:
Dãy số \(\left( {{u_n}} \right)_{n = 1}^{ + \infty }\) là cấp số cộng, công sai d. Tổng \({S_{100}} = {u_1} + {u_2} + ... + {u_{100}},{u_1} \ne 0\) là
Cho hàm số \(y=f(x)\) liên tục trên R có đồ thị như hình vẽ:
Có bao nhiêu giá trị của n để phương trình \(f\left( {16{{\cos }^2}x + 6\sin 2x - 8} \right) = f\left( {n\left( {n + 1} \right)} \right)\) có nghiệm \(x \in R?\)
Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x) = x{({x^2} + 2x)^3}({x^2} - \sqrt 2 ),\forall x \in R.\) Số điểm cực trị của hàm số là:
Số tập con của tập \(M = \left\{ {1;2;3} \right\}\) là:
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a (tham khảo hình vẽ)
Khoảng cách giữa hai đường thẳng BD và A'C' bằng:
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:
Hàm số \(y=f(x)\) đồng biến trên khoảng nào dưới đây?
Cho hàm số \(y = \frac{1}{x}.\) Đạo hàm cấp hai của hàm số là:
Nếu \(\sin x + \cos x = \frac{1}{2}\) thì \(sin 2x\)bằng
Cho hình chóp S.ABC có \(SA = SC = \frac{{a\sqrt 6 }}{2},SB = a\sqrt 2 ,AB = BC = \frac{{a\sqrt 2 }}{2};AC = a.\) Tính góc \(\left( {SB,ABC} \right).\)
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:
Hàm số đạt cực tiểu tại điểm