Gọi S là tập hợp tất cả các giá trị của tham số \(m\in \mathbb{Z}\) và bất phương trình \({{\log }_{m-5}}\left( {{x}^{2}}-6x+12 \right)>{{\log }_{\sqrt{m-5}}}\sqrt{x+2}\) có tập nghiệm chứa đúng hai giá trị nguyên. Tìm tổng các phần tử của tập S.
A. 2
B. 0
C. 3
D. 1
Lời giải của giáo viên
Điều kiện xác định của phương trình là \(\left\{ \begin{array}{l} {x^2} - 6x + 12 > 0\\ x + 2 > 0\\ m - 5 > 0\\ m - 5 \ne 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x > - 2\\ m > 5\\ m \ne 6 \end{array} \right.\)
Ta có \({{\log }_{m-5}}\left( {{x}^{2}}-6x+12 \right)>{{\log }_{\sqrt{m-5}}}\sqrt{x+2}\)\(\Leftrightarrow {{\log }_{m-5}}\left( {{x}^{2}}-6x+12 \right)>{{\log }_{m-5}}\left( x+2 \right)\) (1)
Khi 5<m<6 thì \(\left( 1 \right)\Leftrightarrow {{x}^{2}}-6x+12<x+2\) \(\Leftrightarrow {{x}^{2}}-7x+10<0\) \(\Leftrightarrow 2<x<5\)
Do đó, tập nghiệm của \(\left( 1 \right)\) là \(T=\left( 2;5 \right)\) có chứa đúng 2 giá trị nguyên.
Nhưng tập tham số m không chứa giá trị nguyên.
Khi m>6 thì \(\left( 1 \right)\Leftrightarrow {{x}^{2}}-6x+12>x+2\) \(\Leftrightarrow {{x}^{2}}-7x+10>0\) \(\Leftrightarrow \left[ \begin{align} & x<2 \\ & x>5 \\ \end{align} \right.\)
Do đó, tập nghiệm của \(\left( 1 \right)\) là \(T=\left( -2;2 \right)\cup \left( 5;+\infty\right)\) có chứa nhiều 2 giá trị nguyên.
Kết luận \(S=\varnothing \). Tổng các phần tử của tập S bằng 0.
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số nguyên m để hàm số \(y={{x}^{3}}-3{{x}^{2}}-mx+4\) có hai điểm cực trị thuộc khoảng \(\left( -3;3 \right).\)
Hàm số nào trong các hàm số sau đây là một nguyên hàm của hàm số\(y={{e}^{-2x}}?\)
Trong không gian với hệ tọa độ Oxyz , cho vectơ \(\overrightarrow{AO}=3\left( \overrightarrow{i}+4\overrightarrow{j} \right)-2\overrightarrow{k}+5\overrightarrow{j}\). Tìm tọa độ của điểm A .
Trong không gian với hệ trục \(Oxyz\) , cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=12\) và mặt phẳng \(\left( P \right):2x+2y-z-3=0\) . Viết phương trình mặt phẳng \(\left( Q \right)\) song song với \(\left( P \right)\) và cắt \(\left( S \right)\) theo thiết diện là đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm mặt cầu và đáy là đường tròn \(\left( C \right)\) có thể tích lớn nhất .
Với \(\alpha \) là một số thực bất kỳ, mệnh đề nào sau đây sai?
Cho số phức \(z=a+bi\) \(\left( a,b\in \mathbb{R} \right)\). Khẳng định nào sau đây sai?
Trong không gian \(O\,xyz\), cho điểm \(A\left( 1;2;-1 \right)\), đường thẳng \(d:\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-2}{-1}\) và mặt phẳng \(\left( P \right):x+y+2z+1=0\). Điểm B thuộc mặt phẳng \(\left( P \right)\) thỏa mãn đường thẳng AB vừa cắt vừa vuông góc với d. Tọa độ điểm B là:
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-3}{x+1}\) tương ứng có phương trình là
Xét các số phức z thỏa mãn \(\left| z+2-i \right|+\left| z-4-7i \right|=6\sqrt{2}\) . Gọi m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của \(\left| z-1+i \right|\) . Tính P=m+M .
Trong không gian Oxyz, cho điểm \(M\left( 2;3;4 \right)\). Gọi A, B, C lần lượt là hình chiếu vuông góc của M lên các trục Ox, Oy, Oz. Viết phương trình mặt phẳng \(\left( ABC \right)\).
Trong không gian Oxyz, đường thẳng đi qua điểm \(A\left( 1;4;-7 \right)\) và vuông góc với mặt phẳng \(x+2y-2z-3=0\) có phương trình là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt bên SAB là tam giác vuông cân tại S và nằm trên mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng AB và SC.
Cho a, b là các số thực dương khác 1 thỏa mãn \({{\log }_{a}}b=\sqrt{3}\). Giá trị của \({{\log }_{\frac{\sqrt{b}}{a}}}\left( \frac{\sqrt[3]{b}}{\sqrt{a}} \right)\) là:
Trong không gian \(Oxyz\) cho mặt cầu \(\left( S \right)\) có phương trình:\({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y+4z-7=0\). Xác định tọa độ tâm \(I\) và bán kính \(R\) của mặt cầu\(\left( S \right)\):