Lời giải của giáo viên
Đáp án A:
\(\begin{array}{l}y' = \dfrac{{3\left( {5x + 7} \right) - 5\left( {3x + 10} \right)}}{{{{\left( {5x + 7} \right)}^2}}}\\ = - \dfrac{{29}}{{{{\left( {5x + 7} \right)}^2}}} < 0\left( L \right)\end{array}\)
Đáp án B:
\(\begin{array}{l}y' = \dfrac{{ - 1\left( {5x - 3} \right) - 5\left( { - x + 1} \right)}}{{{{\left( {5x - 3} \right)}^2}}}\\ = - \dfrac{2}{{{{\left( {5x - 3} \right)}^2}}} < 0\left( L \right)\end{array}\)
Đáp án C:
\(\begin{array}{l}y' = \dfrac{{ - 1\left( {x + 3} \right) - \left( { - x - 8} \right)}}{{{{\left( {x + 3} \right)}^2}}}\\ = \dfrac{5}{{{{\left( {x + 3} \right)}^2}}} > 0\left( {TM} \right)\end{array}\)
Đáp án D:
\(\begin{array}{l}y' = \dfrac{{3\left( {x + 1} \right) - \left( {3x + 5} \right)}}{{{{\left( {x + 1} \right)}^2}}}\\ = - \dfrac{2}{{{{\left( {x + 1} \right)}^2}}} < 0\left( L \right)\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tích phân \(\int\limits_0^1 {\left( {x - 2} \right){e^{2x}}dx} \) bằng
Biết rằng \(z = {m^2} - 3m + 3 + \left( {m - 2} \right)i\) \(\left( {m \in \mathbb{R}} \right)\) là một số thực. Giá trị của biểu thức \(1 + z + {z^2} + {z^3} + ... + {z^{2019}}\) bằng
Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(A\left( {2;5} \right)\). Phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {1;2} \right)\) biến điểm \(A\) thành điểm \(A'\) có tọa độ là.
Cho khối chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy và SA=a. Tính thể tích khối chóp S.ABC
Đồ thị hàm số \(y = \dfrac{{x - 2}}{{x + 1}}\) có đường tiệm cận ngang là
Gọi \({z_1};\,\,{z_2}\) lần lượt là nghiệm của phương trình \({z^2} - 2z + 5 = 0\). Giá trị \({\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) bằng
Tập xác định của hàm số \(y = {\left( {x - 2} \right)^{\sqrt 5 }}\) là:
Phương trình \({\cos ^2}x + 2\cos x - 3 = 0\) có nghiệm là
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right) = {e^{x + 1}} - 2\) trên đoạn \(\left[ {0;3} \right]\). Tính \(M - m\).
Trong không gian Oxyz, cho hai điểm \(A\left( {3;5; - 1} \right)\) và \(B\left( {1;1;3} \right)\). Tọa độ điểm M thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) nhỏ nhất là
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + 2z + 1 = 0\) và hai điểm \(A\left( {1;0; - 2} \right),\) \(B\left( { - 1; - 1;3} \right)\). Mặt phẳng \(\left( Q \right)\) đi qua hai điểm A, B và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình là
Trong các hàm số sau đây, hàm số nào nghịch biến trên \(\mathbb{R}\)?
Trong không gian Oxyz, biết mặt cầu \(\left( S \right)\) tâm O và tiếp xúc với mặt phẳng \(\left( P \right):x - 2y + 2z + 9 = 0\) tại điểm \(H\left( {a;b;c} \right)\). Giá trị tổng \(a + b + c\) bằng
Thể tích V của khối nón có bán kính đáy R và độ dài đường cao h được tính theo công thức nào dưới đây?