Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Lý Thường Kiệt
Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Lý Thường Kiệt
-
Hocon247
-
50 câu hỏi
-
90 phút
-
61 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Trong không gian Oxyz, cho điểm \(I\left( {1;2;0} \right)\) và mặt phẳng \(\left( P \right):2x - 2y + z - 7 = 0\). Gọi \(\left( S \right)\) là mặt cầu có tâm I và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là một đường tròn \(\left( C \right)\). Biết rằng hình tròn \(\left( C \right)\) có diện tích bằng \(16\pi \). Mặt cầu \(\left( S \right)\) có phương trình là
Ta có \(I\left( {1;2;0} \right);\) \(\left( P \right):2x - 2y + z - 7 = 0\)
\( \Rightarrow d\left( {I;\left( P \right)} \right) = \frac{{\left| {2.1 - 2.2 + 0 - 7} \right|}}{{\sqrt {4 + 4 + 1} }} = 3.\)
Đường tròn tâm A có \(S = 16\pi \)\( \Rightarrow \pi .A{B^2} = 16\pi \Rightarrow AB = 4\)
Áp dụng định lý Pyatgo trong tam giác ABI có \(I{B^2} = I{A^2} + A{B^2} = {3^2} + {4^2}\)\( \Rightarrow R = IB = 5\)
Mặt cầu tâm \(I\left( {1;2;0} \right)\) bán kính \(R = 5\) có phương trình là: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 25.\)
Tích phân \(\int\limits_0^1 {\left( {x - 2} \right){e^{2x}}dx} \) bằng
Gọi \(I = \int\limits_0^1 {\left( {x - 2} \right){e^{2x}}dx} \)
Đặt \(\left\{ \begin{array}{l}u = x - 2\\dv = {e^{2x}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = \frac{{{e^{2x}}}}{2}\end{array} \right..\)
Khi đó ta có:
\(\begin{array}{l}I = \left. {\left( {x - 2} \right)\frac{{{e^{2x}}}}{2}} \right|_0^1 - \int\limits_0^1 {\frac{{{e^{2x}}}}{2}dx} \\\,\,\, = - \frac{1}{2}{e^2} + 1 - \left. {\frac{{{e^{2x}}}}{4}} \right|_0^1\\\,\,\, = - \frac{1}{2}{e^2} + 1 - \frac{{{e^2}}}{4} + \frac{1}{4}\\\,\,\, = - \frac{3}{4}{e^2} + \frac{5}{4} = \frac{{5 - 3{e^2}}}{4}\end{array}\)
Họ nguyên hàm của hàm số \(f\left( x \right) = x\sin x\) là
Ta có \(\int {f\left( x \right)dx = \int {x\sin x} dx} \)
Đặt \(\left\{ \begin{array}{l}u = x\\dv = \sin xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = - \cos x\end{array} \right.\)
Khi đó \(\int {f\left( x \right) = - x\cos x + \int {\cos xdx} + C} \)\( = - x\cos x + \sin x + C\)
Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = 4x - {x^2}\) và \(y = 2x\) bằng
Xét phương trình hoành độ giao điểm \(4x - {x^2} = 2x \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right..\)
Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số trên là:
\(S = \int\limits_0^2 {\left| {{x^2} - 2x} \right|dx} \)\( = \int\limits_0^2 {\left( {2x - {x^2}} \right)dx} = \frac{4}{3}.\)
Cho \(\int {f\left( x \right)dx = F\left( x \right) + C} \). Khi đó \(\int {f\left( {2x - 3} \right)dx} \)
Đặt \(t = 2x - 3 \Rightarrow dt = 2xdx\).
Khi đó ta có: \(\int {f\left( {2x - 3} \right)dx} = \frac{1}{2}\int {f\left( t \right)dt} \).
Mà \(\int {f\left( x \right)dx} = F\left( x \right) + C\) nên \(\int {f\left( t \right)dt} = F\left( t \right) + C\)\( = F\left( {2x - 3} \right) + C\)
Vậy \(\int {f\left( {2x - 3} \right)dx} = \frac{1}{2}F\left( {2x - 3} \right) + C\).
Gọi \({z_1};\,\,{z_2}\) lần lượt là nghiệm của phương trình \({z^2} - 2z + 5 = 0\). Giá trị \({\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) bằng
Ta có
\(\begin{array}{l}{z^2} - 2z + 5 = 0\\ \Leftrightarrow \left\{ \begin{array}{l}{z_1} = 1 + 2i\\{z_2} = 1 - 2i\end{array} \right.\\ \Rightarrow {\left| {{z_1}} \right|^2} = {\left| {{z_2}} \right|^2} = 5\\ \Rightarrow {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} = 10\end{array}\)
Trong không gian Oxyz, phương trình của mặt phẳng đi qua điểm \(M\left( {2; - 3;4} \right)\) và có vecto pháp tuyến \(\overrightarrow n = \left( { - 2;4;1} \right)\) là
Mặt phẳng đi qua \(M\left( {2; - 3;4} \right)\) và có vecto pháp tuyến \(\overrightarrow n = \left( { - 2;4;1} \right)\) có phương trình là
\( - 2\left( {x - 2} \right) + 4\left( {y + 3} \right) + \left( {z - 4} \right) = 0\)\( \Leftrightarrow 2x - 4y - z - 12 = 0\)
Phần ảo của số phức\(z = 2019 + {i^{2019}}\) bằng
Ta có \(z = 2019 + {i^{2019}} = 2019 + i.{\left( {{i^2}} \right)^{1009}}\)\( = 2019 + i\left( { - 1} \right) = 2019 - i\)
Vậy z có phần ảo bằng \( - 1.\)
Mô đun của số phức \(z = - 1 + i\) bằng
Ta có \(z = - 1 + i\)\( \Rightarrow \left| z \right| = \sqrt {{{\left( { - 1} \right)}^2} + {1^2}} = \sqrt 2 \)
Một ô tô đang chạy với vận tốc 20 m/s thì người ta nhìn thấy một chướng ngại vật nên đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right) = - 2t + 20\), trong đó t là thời gian (tính bằng giấy) kể từ lúc đạp phanh. Quãng đường mà ô tô đi được trong 15 giây cuối cùng bằng
Quãng đường mà ô tô đi được trong 15 giây cuối cùng là:
\(s = \int\limits_0^{15} {\left( { - 2t + 20} \right)dt} \)\( = \left. {\left( { - {t^2} + 20t} \right)} \right|_0^{15} = 75.\)
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + 2z + 1 = 0\) và hai điểm \(A\left( {1;0; - 2} \right),\) \(B\left( { - 1; - 1;3} \right)\). Mặt phẳng \(\left( Q \right)\) đi qua hai điểm A, B và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình là
Mặt phẳng \(\left( P \right)\) có 1 VTPT là \(\overrightarrow {{n_P}} = \left( {2; - 1;2} \right)\).
Ta có: \(A\left( {1;0; - 2} \right);B\left( { - 1; - 1;3} \right)\)\( \Rightarrow \overrightarrow {AB} = \left( { - 2; - 1;5} \right).\)
\( \Rightarrow \left[ {\overrightarrow {{n_P}} ;\overrightarrow {AB} } \right] = \left( { - 3; - 14; - 4} \right).\).
Gọi \(\overrightarrow {{n_Q}} \) là 1 VTPT của mặt phẳng \(\left( Q \right)\) ta có: \(\left\{ \begin{array}{l}AB \subset \left( Q \right)\\\left( Q \right) \bot \left( P \right)\end{array} \right. \)
\(\Rightarrow \overrightarrow {{n_Q}} = \left[ {\overrightarrow {AB} ;\overrightarrow {{n_P}} } \right] = \left( { - 3; - 14; - 4} \right)\) là 1 VTPT của mặt phẳng \(\left( Q \right)\).
Vậy phương trình mặt phẳng \(\left( Q \right)\) là:
\( - 3\left( {x - 1} \right) - 14\left( {y - 0} \right) - 4\left( {z + 2} \right) = 0\) \( \Leftrightarrow 3x + 14y + 4z + 5 = 0\)
Cho hàm số \(f\left( x \right)\) liên tục, có đạo hàm trên \(\mathbb{R}\), \(f\left( 2 \right) = 16\) và \(\int\limits_0^8 {f\left( x \right)dx = 4} \). Tích phân \(\int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)dx} \) bằng:
Gọi \(I = \int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)dx} \)
Đặt \(\left\{ \begin{array}{l}u = x\\dv = f'\left( {\frac{x}{2}} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = 2f\left( {\frac{x}{2}} \right)\end{array} \right.\)
\(\begin{array}{l} \Rightarrow I = \left. {2xf\left( {\frac{x}{2}} \right)} \right|_0^4 - 2\int\limits_0^4 {f\left( {\frac{x}{2}} \right)dx} \\ \Leftrightarrow I = 8f\left( 2 \right) - 4\int\limits_0^4 {f\left( {\frac{x}{2}} \right)d\left( {\frac{x}{2}} \right)} \\ \Leftrightarrow I = 8.16 - 4\int\limits_0^8 {f\left( x \right)dx} \\ \Leftrightarrow I = 128 - 4.4 = 112.\end{array}\)
Biết rằng \(\int\limits_0^1 {x{e^{{x^2} + 2}}dx = \frac{a}{2}\left( {{e^b} - {e^c}} \right)} \) với \(a,\,\,b,\,\,c \in \mathbb{Z}\). Giá trị của \(a + b + c\) bằng
Đặt \({x^2} + 2 = t \Rightarrow 2xdx = dt\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 2\\x = 1 \Rightarrow t = 3\end{array} \right.\).
Khi đó ta có:
\(\begin{array}{l}I = \int\limits_0^1 {x{e^{{x^2} + 2}}dx} = \frac{1}{2}\int\limits_2^3 {{e^t}dt} \\I = \left. {\frac{1}{2}{e^t}} \right|_2^3 = \frac{1}{2}\left( {{e^3} - {e^2}} \right)\end{array}\)
Mà \(I = \frac{a}{2}\left( {{e^b} - {e^c}} \right)\)\( \Rightarrow a = 1;\,\,\,b = 3;\,\,c = 2\)
Vậy \(a + b + c = 1 + 3 + 2 = 6.\)
Biết rằng \(z = {m^2} - 3m + 3 + \left( {m - 2} \right)i\) \(\left( {m \in \mathbb{R}} \right)\) là một số thực. Giá trị của biểu thức \(1 + z + {z^2} + {z^3} + ... + {z^{2019}}\) bằng
Vì \(z = {m^2} - 3m + 3 + \left( {m - 2} \right)i\) là số thực nên \(m - 2 = 0 \Leftrightarrow m = 2.\)
Suy ra \(z = {m^2} - 3m + 3 = 1.\)
Vậy \(1 + z + {z^2} + ... + {z^{2019}}\)\( = 1 + 1 + 1 + ... + 1 = 2020\) (có 2020 số 1).
Trong không gian Oxyz, cho đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 2}} = \frac{{z - 3}}{1}\) và điểm \(A\left( {1;0; - 1} \right)\). Gọi \({d_2}\) là đường thẳng đi qua A và có vecto chỉ phương \(\overrightarrow u = \left( {a;1;2} \right)\). Giá trị của a sao cho đường thẳng \({d_1}\) cắt đường thẳng \({d_2}\) là
Đường thẳng \({d_1}\) có 1 VTCP là \(\overrightarrow {{u_1}} = \left( {1; - 2;1} \right)\) và đi qua điểm \(M\left( {1;2;3} \right)\).
Ta có: \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow u } \right] = \left( { - 5;a - 2;1 + 2a} \right)\) và \(\overrightarrow {AM} = \left( {0;2;4} \right)\).
Để \({d_1},\,\,{d_2}\) cắt nhau thì \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right].\overrightarrow {AM} = 0\).
\(\begin{array}{l} \Leftrightarrow - 5.0 + \left( {a - 2} \right).2 + \left( {1 - 2a} \right).4 = 0\\ \Leftrightarrow 2a - 4 + 4 - 8a = 0\\ \Leftrightarrow a = 0.\end{array}\)
Trong không gian Oxyz, cho hai điểm \(A\left( {3;5; - 1} \right)\) và \(B\left( {1;1;3} \right)\). Tọa độ điểm M thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) nhỏ nhất là
Ta tìm điểm I sao cho \(\overrightarrow {IA} + \overrightarrow {IB} = 0\)\( \Rightarrow I\) là trung điểm của \(AB\).
Ta có \(A\left( {3;5; - 1} \right);B\left( {1;1;3} \right) \Rightarrow I\left( {2;3;1} \right).\)
Ta có: \(\overrightarrow {MA} + \overrightarrow {MB} = 2\overrightarrow {MI} + \overrightarrow {IA} + \overrightarrow {IB} = 2\overrightarrow {MI} \) \( \Rightarrow \left| {\overrightarrow {MA} + \overrightarrow {MB} } \right| = \left| {2\overrightarrow {MI} } \right| = 2MI\).
Khi đó \({\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|_{\min }} \Leftrightarrow M{I_{\min }} \Leftrightarrow M\) là hình chiếu của \(I\) trên \(\left( {Oxy} \right)\).
Mà \(I\left( {2;3;1} \right) \Rightarrow M\left( {2;3;0} \right)\).
Trong không gian Oxyz, biết mặt cầu \(\left( S \right)\) tâm O và tiếp xúc với mặt phẳng \(\left( P \right):x - 2y + 2z + 9 = 0\) tại điểm \(H\left( {a;b;c} \right)\). Giá trị tổng \(a + b + c\) bằng
Vì mặt cầu \(\left( S \right)\) tâm O và tiếp xúc với mặt phẳng \(\left( P \right):x - 2y + 2z + 9 = 0\) tại điểm \(H\left( {a;b;c} \right)\) nên \(H\) là hình chiếu của \(O\) lên \(\left( P \right)\).
\( \Rightarrow OH \bot \left( P \right)\)\( \Rightarrow \overrightarrow {{u_{OH}}} = \overrightarrow {{n_P}} = \left( {1; - 2;2} \right)\).
Phương trình đường thẳng \(OH\) là: \(\left\{ \begin{array}{l}x = t\\y = - 2t\\z = 2t\end{array} \right.\).
Vì \(H \in OH \Rightarrow H\left( {t; - 2t;2t} \right)\).
Lại có \(H \in \left( P \right) \Rightarrow t - 2.\left( { - 2t} \right) + 2.2t + 9 = 0\) \( \Leftrightarrow 9t + 9 = 0 \Leftrightarrow t = - 1\).
\( \Rightarrow H\left( { - 1;2; - 2} \right)\).
\( \Rightarrow a = - 1,\,\,b = 2,\,\,c = - 2\)
Vậy \(a + b + c = - 1 + 2 + \left( { - 2} \right) = - 1.\)
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x}{2} = \frac{{y - 3}}{1} = \frac{{z - 2}}{{ - 3}}\) và mặt phẳng \(\left( P \right):x - y + 2z - 6 = 0\). Đường thẳng nằm trong mặt phẳng \(\left( P \right)\), cắt và vuông góc với đường thẳng d có phương trình là
Gọi \(H = d \cap \left( P \right)\).
Vì \(H \in d \Rightarrow H\left( {2t;3 + t;2 - 3t} \right).\)
Mà \(H \in \left( P \right)\)\( \Rightarrow 2t - \left( {3 + t} \right) + 2\left( {2 - 3t} \right) - 6 = 0\)
\( \Leftrightarrow - 5t - 5 = 0 \Leftrightarrow t = - 1\)
\( \Rightarrow H\left( { - 2;2;5} \right)\)
Gọi đường thẳng cần tìm là \(d'\). Vì \(d' \subset \left( P \right)\) và \(d'\) cắt \(d\) nên \(H \in d'\) .
Gọi \(\overrightarrow {{u_d}} = \left( {2;1; - 3} \right)\) là 1 VTCP của \(d\), \(\overrightarrow n \left( {1; - 1;2} \right)\) là 1 VTPT của \(\left( P \right)\).
Ta lại có: \(\left\{ \begin{array}{l}d' \subset \left( P \right)\\d \bot d'\end{array} \right.\)\( \Rightarrow \overrightarrow {{u_{d'}}} = \left[ {\overrightarrow {{u_d}} ;\overrightarrow {{n_P}} } \right] = \left( { - 1; - 7; - 3} \right)\) là 1 VTCP của đường thẳng \(d'\).
\( \Rightarrow \left( {1;7;3} \right)\) cũng là 1 VTCP của đường thẳng \(d'\).
Vậy phương trình đường thẳng \(d'\) cần tìm là: \(\frac{{x + 2}}{1} = \frac{{y - 2}}{7} = \frac{{z - 5}}{3}\).
Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^2} + x\) và \(F\left( 1 \right) = 1\). Giá trị của \(F\left( { - 1} \right)\) bằng
Ta có \(F\left( x \right) = \int {f\left( x \right) = \int {\left( {{x^2} + x} \right)dx} } \)\( \Rightarrow F\left( x \right) = \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} + C\)
Mà \(F\left( 1 \right) = 1 \Leftrightarrow \frac{1}{3} + \frac{1}{2} + C = 1\)\( \Leftrightarrow C = \frac{1}{6}.\)
\( \Rightarrow F\left( x \right) = \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} + \frac{1}{6}.\)
Vậy \(F\left( { - 1} \right) = - \frac{1}{3} + \frac{1}{2} + \frac{1}{6} = \frac{1}{3}.\)
Biết số phức z thỏa mãn điều kiện \(\frac{{5\left( {\overline z + i} \right)}}{{z + 1}} = 2 - i\). Mô đun số phức \({\rm{w}} = 1 + z + {z^2}\) bằng
Đặt \(z = a + bi \Rightarrow \overline z = a - bi\).
Theo bài ra ta có:
\(\begin{array}{l}\,\,\,\,\,\frac{{5\left( {\overline z + i} \right)}}{{z + 1}} = 2 - i\\ \Rightarrow \frac{{5\left( {a - bi + i} \right)}}{{a + bi + 1}} = 2 - i\\ \Leftrightarrow 5\left[ {a - \left( {b - 1} \right)i} \right] \\= \left( {a + 1 + bi} \right)\left( {2 - i} \right)\\ \Leftrightarrow 5a - 5\left( {b - 1} \right)i\\= 2\left( {a + 1} \right) + b + \left( {2b - a - 1} \right)i\\ \Leftrightarrow \left\{ \begin{array}{l}5a = 2a + 2 + b\\5 - 5b = 2b - a - 1\end{array} \right. \\\Rightarrow a = b = 1\\ \Rightarrow z = 1 + i \Rightarrow {z^2} = 2i\\ \Rightarrow {\rm{w}} = 1 + z + {z^2} = 1 + 1 + i + 2i \\= 2 + 3i\end{array}\)
Vậy \(\left| {\rm{w}} \right| = \sqrt {{2^2} + {3^2}} = \sqrt {13} .\)
Cho hình lăng trụ đứng có diện tích đáy là \(3{{\rm{a}}^2}\), độ dài cạnh bên là 3a. Thể tích khối lăng trụ này bằng
Chiều cao lăng trụ là 3a và diện tích đáy là \(3{{\rm{a}}^2} \Rightarrow V = 9{{\rm{a}}^3}\).
Thể tích V của khối nón có bán kính đáy R và độ dài đường cao h được tính theo công thức nào dưới đây?
Khối nón có bán kính đáy R, chiều cao h thì có thể tích \(V = \dfrac{1}{3}\pi .{R^2}.h\).
Tính bán kính r của mặt cầu có diện tích là \({\rm{S}} = 16\pi (c{m^2})\).
Ta có \({\rm{S}} = 4\pi {r^2} = 16\pi \Rightarrow r = 2cm\)
Tập xác định của hàm số \(y = {\left( {x - 2} \right)^{\sqrt 5 }}\) là:
Ta có: \(x - 2 > 0 \Leftrightarrow x > 2 \Rightarrow D = \left( {2; + \infty } \right)\)
Tìm tọa độ giao điểm I của đồ thị hàm số \(y = - 4{x^3} + 3x\) với đường thẳng \(y = x - 2\)
Hoành độ giao điểm của đồ thị hàm số \(y = - 4{x^3} + 3x\) và đường thẳng \(y = x - 2\) là nghiệm của phương trình \( - 4{x^3} + 3x = x - 2\)
\( \Leftrightarrow 4{x^3} - 2x - 2 = 0 \Leftrightarrow x = 1\)\( \Rightarrow y = 1 - 2 = - 1 \Rightarrow I\left( {1; - 1} \right)\)
Tìm nghiệm của phương trình \({\log _2}\left( {1 - x} \right) = 3\)
\({\log _2}\left( {1 - x} \right) = 3 \Leftrightarrow 1 - x = {2^3} \Leftrightarrow x = - 7\)
Giải phương trình \({4^{x - 1}} = {32^{3 - 2x}}\)
\(\begin{array}{l}{4^{x - 1}} = {32^{3 - 2x}} \Leftrightarrow {2^{2x - 2}} = {2^{15 - 10x}}\\ \Leftrightarrow 2x - 2 = 15 - 10x\\ \Leftrightarrow x = \dfrac{{17}}{{12}}\end{array}\)
Đồ thị hàm số \(y = \dfrac{{x - 2}}{{x + 1}}\) có đường tiệm cận ngang là
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{x - 2}}{{x + 1}} = 1\)
Trong các hàm số sau đây, hàm số nào nghịch biến trên \(\mathbb{R}\)?
Đáp án A: \(y = {\left( {\dfrac{1}{2}} \right)^{ - x}} = {2^x} \Rightarrow a > 1\). Loại
Đáp án B: \(0 < \dfrac{2}{e} < 1\). Thỏa mãn.
Đáp án C: \(\sqrt 3 > 1\). Loại
Đáp án D: \(\dfrac{\pi }{3} > 1\). Loại
Tìm giá trị cực đại của hàm số \(y = {x^4} - 4{x^2} + 3\)
\(y' = 0 \Leftrightarrow 4{x^3} - 8x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 2 \end{array} \right.\)
Hàm số đạt cực đại tại \(x = 0 \Rightarrow {y_{CD}} = 3\).
Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(f\left( x \right) = - {x^3} + 2{x^2} - 1\) trên đoạn \(\left[ { - 1;2} \right]\) là
\(\begin{array}{l}y' = - 3{x^2} + 4x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0 \in \left[ { - 1;2} \right]\\x = \dfrac{4}{3} \in \left[ { - 1;2} \right]\end{array} \right.\end{array}\)
\(\begin{array}{l}f\left( 0 \right) = - 1;f\left( {\dfrac{4}{3}} \right) = \dfrac{5}{{27}}\\f\left( { - 1} \right) = 2;f\left( 2 \right) = - 1\\ \Rightarrow m = - 1;M = 2 \Rightarrow M + m = 1\end{array}\)
Cho khối chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy và SA=a. Tính thể tích khối chóp S.ABC
\(\begin{array}{l}{{\rm{S}}_{\Delta ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\\ \Rightarrow {V_{S.ABC}} = \dfrac{1}{3}SA.{S_{\Delta ABC}}\\ = \dfrac{1}{3}.a.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{{12}}\end{array}\)
Cho khối nón có độ dài đường sinh bằng 10 và diện tích xung quanh bằng \(60\pi \). Thể tích của khối nón đã cho bằng
Bán kính của khối nón: \(r = \dfrac{{{S_{xq}}}}{{\pi l}} = \dfrac{{60\pi }}{{10\pi }} = 6\)
Chiều cao của khối nón là \(h = \sqrt {{l^2} - {r^2}} = 8\)
\( \Rightarrow V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {.6^2}.8 = 96\pi \)
Cho tam giác ABC vuông tại A có độ dài cạnh AB=3a, AC=4a. Quay tam giác ABC quanh cạnh AB. Thể tích của khối nón tròn xoay được tạo thành là
Cạnh AB là đường cao nên \(h = 3{\rm{a}},r = 4{\rm{a}}\).
Thể tích: \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi .{\left( {4a} \right)^2}.3a = 16\pi {a^3}\)
Hàm số nào sau đây luôn đồng biến trên từng khoảng xác định của nó?
Đáp án A:
\(\begin{array}{l}y' = \dfrac{{3\left( {5x + 7} \right) - 5\left( {3x + 10} \right)}}{{{{\left( {5x + 7} \right)}^2}}}\\ = - \dfrac{{29}}{{{{\left( {5x + 7} \right)}^2}}} < 0\left( L \right)\end{array}\)
Đáp án B:
\(\begin{array}{l}y' = \dfrac{{ - 1\left( {5x - 3} \right) - 5\left( { - x + 1} \right)}}{{{{\left( {5x - 3} \right)}^2}}}\\ = - \dfrac{2}{{{{\left( {5x - 3} \right)}^2}}} < 0\left( L \right)\end{array}\)
Đáp án C:
\(\begin{array}{l}y' = \dfrac{{ - 1\left( {x + 3} \right) - \left( { - x - 8} \right)}}{{{{\left( {x + 3} \right)}^2}}}\\ = \dfrac{5}{{{{\left( {x + 3} \right)}^2}}} > 0\left( {TM} \right)\end{array}\)
Đáp án D:
\(\begin{array}{l}y' = \dfrac{{3\left( {x + 1} \right) - \left( {3x + 5} \right)}}{{{{\left( {x + 1} \right)}^2}}}\\ = - \dfrac{2}{{{{\left( {x + 1} \right)}^2}}} < 0\left( L \right)\end{array}\)
Cho tứ diện đều ABCD cạnh bằng 2a. Tính thể tích của khối tứ diện đó
Thể tích tứ diện đều cạnh \(2a\): \(V = \dfrac{{{{\left( {2a} \right)}^3}\sqrt 2 }}{{12}} = \dfrac{{2{a^3}\sqrt 2 }}{3}\)
Tìm tập xác định của hàm số \(y = {\log _3}\dfrac{{3 - x}}{{x + 2}}\)
Hàm số xác định khi: \(\dfrac{{3 - x}}{{x + 2}} > 0 \Leftrightarrow - 2 < x < 3\)
Cho \(0 < a \ne 1\). Giá trị của biểu thức \(P = {\log _4}\left( {{a^2}\sqrt[3]{{{a^2}}}} \right)\) là
\(\begin{array}{l}P = {\log _a}\left( {{a^2}\sqrt[3]{{{a^2}}}} \right) = {\log _a}\left( {{a^2}.{a^{\dfrac{2}{3}}}} \right)\\ = {\log _a}\left( {{a^{2 + \dfrac{2}{3}}}} \right) = {\log _a}\left( {{a^{\dfrac{8}{3}}}} \right) = \dfrac{8}{3}\end{array}\)
Nghiệm của bất phương trình \({9^{x - 1}} - {36.3^{x - 1}} + 3 \ge 0\) là
\(\begin{array}{l}{9^{x - 1}} - {36.3^{x - 3}} + 3 \ge 0\\ \Leftrightarrow {3^{2\left( {x - 1} \right)}} - {4.3^{x - 1}} + 3 \ge 0\end{array}\)
Đặt \({3^{x - 1}} = t\left( {t > 0} \right)\), bất phương trình trở thành
\(\begin{array}{l}{t^2} - 4t + 3 \ge 0 \Leftrightarrow \left[ \begin{array}{l}t \ge 3\\t \le 1\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{3^{x - 1}} \ge 3\\{3^{x - 1}} \le 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x - 1 \ge 1\\x - 1 \le 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x \ge 2\\x \le 1\end{array} \right.\end{array}\)
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right) = {e^{x + 1}} - 2\) trên đoạn \(\left[ {0;3} \right]\). Tính \(M - m\).
\(y' = {e^{x + 1}} > 0\forall x \in \left[ {0;3} \right]\).
Hàm số liên tục trên \(\left[ {0;3} \right]\) nên
\(\begin{array}{l}m = \mathop {\min }\limits_{x \in \left[ {0;3} \right]} y = f\left( 0 \right) = e - 2;\\M = \mathop {\max }\limits_{x \in \left[ {0;3} \right]} y = f\left( 3 \right) = {e^4} - 2\\ \Rightarrow M - m = {e^4} - e\end{array}\)
Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(A\left( {2;5} \right)\). Phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {1;2} \right)\) biến điểm \(A\) thành điểm \(A'\) có tọa độ là.
\(\begin{array}{l}{T_{\overrightarrow v }}\left( A \right) = A' \Leftrightarrow AA' = \overrightarrow v \\ \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = {x_A} + 1 = 3\\{y_{A'}} = {y_A} + 2 = 7\end{array} \right.\end{array}\)
Phương trình \({\cos ^2}x + 2\cos x - 3 = 0\) có nghiệm là
Đặt \(\cos x = t\left( { - 1 \le t \le 1} \right)\). Phương trình ban đầu trở thành:
\(\begin{array}{l}{t^2} + 2t - 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 3\left( L \right)\end{array} \right.\\ \Leftrightarrow \cos x = 1 \Leftrightarrow x = k2\pi ,k \in \mathbb{Z}\end{array}\)
Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(M\left( { - 10;1} \right)\) và \(M'\left( {3;8} \right)\). Phép tịnh tiến theo vectơ \(\overrightarrow v \) biến điểm \(M\) thành điểm \(M'\). Khi đó vectơ \(\overrightarrow v \) có tọa độ là
\(\begin{array}{l}{T_{\overrightarrow v }}\left( M \right) = M' \Leftrightarrow \overrightarrow {MM'} = \overrightarrow v \\\overrightarrow {MM'} = \left( {13;7} \right) \Rightarrow \overrightarrow v = \left( {13;7} \right)\end{array}\)
Có 8 quả ổi và 6 quả xoài. Có bao nhiêu cách chọn ra một quả trong các quả ấy?
Có 8+6=14 quả.
Có \(C_{14}^1 = 14\) cách chọn 1 quả.
Phương trình \(\sin \left( {2x - \dfrac{\pi }{3}} \right) = 0\) có nghiệm là
\(\begin{array}{l}\sin \left( {2x - \dfrac{\pi }{3}} \right) = 0 \Leftrightarrow 2x - \dfrac{\pi }{3} = k\pi \\ \Leftrightarrow x = \dfrac{\pi }{6} + \dfrac{{k\pi }}{2},k \in \mathbb{Z}\end{array}\)
Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(A\left( {3;0} \right)\). Phép quay tâm \(O\) góc quay \(90^\circ \) biến điểm A thành điểm nào sau đây?
\(A\left( {x;y} \right)\)
\(\begin{array}{l}{Q_{\left( {O,90^\circ } \right)}}\left( A \right) = A' \Leftrightarrow A'\left( { - y;x} \right)\\ \Rightarrow A'\left( {0;3} \right)\end{array}\)
Trong mặt phẳng tọa độ \(Oxy\), phép vị tự tâm O tỉ số \( - 2\) biến điểm \(A\left( {1; - 3} \right)\) thành điểm \(A'\) có tọa độ là
\(\begin{array}{l}{V_{\left( {O, - 2} \right)}}\left( A \right) = A' \Leftrightarrow \overrightarrow {OA'} = - 2\overrightarrow {OA} \\ \Leftrightarrow A'\left( { - 2;6} \right)\end{array}\)
Cho dãy số \(\left( {{u_n}} \right)\), biết công thức số hạng tổng quát \({u_n} = 2n - 3\). Số hạng thứ 10 của dãy số bằng
Thay \(n = 10\) vào \({u_n} = 2n - 3\) ta được: \({u_{10}} = 2.10 - 3 = 17\)
Khai triển nhị thức Niu-tơn của \({\left( {4x + 5} \right)^{2019}}\) có bao nhiêu số hạng?
Có 2029+1=2020 số hạng.
Phép vị tự tâm O tỉ số \(k\left( {k \ne 0} \right)\) biến mỗi điểm \(M\) thành điểm \(M'\). Mệnh đề nào sau đây đúng?
\(\begin{array}{l}{V_{\left( {O,k} \right)}}\left( M \right) = M' \Leftrightarrow \overrightarrow {OM'} = k\overrightarrow {OM} \\ \Leftrightarrow \overrightarrow {OM} = \dfrac{1}{k}\overrightarrow {OM'} \end{array}\)