Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(A\left( {3;0} \right)\). Phép quay tâm \(O\) góc quay \(90^\circ \) biến điểm A thành điểm nào sau đây?
A. \(M\left( { - 3;0} \right)\)
B. \(N\left( {3;3} \right)\)
C. \(P\left( {0; - 3} \right)\)
D. \(Q\left( {0;3} \right)\)
Lời giải của giáo viên
\(A\left( {x;y} \right)\)
\(\begin{array}{l}{Q_{\left( {O,90^\circ } \right)}}\left( A \right) = A' \Leftrightarrow A'\left( { - y;x} \right)\\ \Rightarrow A'\left( {0;3} \right)\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tích phân \(\int\limits_0^1 {\left( {x - 2} \right){e^{2x}}dx} \) bằng
Biết rằng \(z = {m^2} - 3m + 3 + \left( {m - 2} \right)i\) \(\left( {m \in \mathbb{R}} \right)\) là một số thực. Giá trị của biểu thức \(1 + z + {z^2} + {z^3} + ... + {z^{2019}}\) bằng
Cho khối chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy và SA=a. Tính thể tích khối chóp S.ABC
Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(A\left( {2;5} \right)\). Phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {1;2} \right)\) biến điểm \(A\) thành điểm \(A'\) có tọa độ là.
Đồ thị hàm số \(y = \dfrac{{x - 2}}{{x + 1}}\) có đường tiệm cận ngang là
Phương trình \({\cos ^2}x + 2\cos x - 3 = 0\) có nghiệm là
Gọi \({z_1};\,\,{z_2}\) lần lượt là nghiệm của phương trình \({z^2} - 2z + 5 = 0\). Giá trị \({\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) bằng
Tập xác định của hàm số \(y = {\left( {x - 2} \right)^{\sqrt 5 }}\) là:
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right) = {e^{x + 1}} - 2\) trên đoạn \(\left[ {0;3} \right]\). Tính \(M - m\).
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + 2z + 1 = 0\) và hai điểm \(A\left( {1;0; - 2} \right),\) \(B\left( { - 1; - 1;3} \right)\). Mặt phẳng \(\left( Q \right)\) đi qua hai điểm A, B và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình là
Hàm số nào sau đây luôn đồng biến trên từng khoảng xác định của nó?
Trong không gian Oxyz, cho hai điểm \(A\left( {3;5; - 1} \right)\) và \(B\left( {1;1;3} \right)\). Tọa độ điểm M thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) nhỏ nhất là
Trong không gian Oxyz, biết mặt cầu \(\left( S \right)\) tâm O và tiếp xúc với mặt phẳng \(\left( P \right):x - 2y + 2z + 9 = 0\) tại điểm \(H\left( {a;b;c} \right)\). Giá trị tổng \(a + b + c\) bằng
Họ nguyên hàm của hàm số \(f\left( x \right) = x\sin x\) là
Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^2} + x\) và \(F\left( 1 \right) = 1\). Giá trị của \(F\left( { - 1} \right)\) bằng