Họ nguyên hàm của hàm số \(f\left( x \right) = \sin x + x\ln x\) là:
A. \(F\left( x \right) = - \cos x + \dfrac{{{x^2}}}{2}\ln x - \dfrac{{{x^2}}}{4} + C\)
B. \(F\left( x \right) = - \cos x + \ln x + C\)
C. \(F\left( x \right) = \cos x + \dfrac{{{x^2}}}{2}\ln x - \dfrac{{{x^2}}}{4} + C\)
D. \(F\left( x \right) = - \cos x + C\)
Lời giải của giáo viên
\(\int\limits_{}^{} {\left( {\sin x + x\ln x} \right)dx} = \int\limits_{}^{} {\sin xdx} + \int\limits_{}^{} {x\ln xdx} = - \cos x + {I_1} + C\)
Xét \({I_1} = \int\limits_{}^{} {x\ln xdx} \). Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{{dx}}{x}\\v = \dfrac{{{x^2}}}{2}\end{array} \right.\)
\( \Rightarrow {I_1} = \ln x.\dfrac{{{x^2}}}{2} - \int\limits_{}^{} {\dfrac{{{x^2}}}{2}\dfrac{{dx}}{x}} = \dfrac{{{x^2}}}{2}\ln x - \dfrac{1}{2}\int\limits_{}^{} {xdx} = \dfrac{{{x^2}}}{2}\ln x - \dfrac{{{x^2}}}{4} + C\).
Vậy \(F\left( x \right) = - \cos x + \dfrac{{{x^2}}}{2}\ln x - \dfrac{{{x^2}}}{4} + C\).
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \({9^x} + {6^x} - m{.4^x} = 0\) có nghiệm là:
Cho hàm số có đồ thị như hình vẽ. Giá trị cực đại của hàm số bằng:
Cho hình chóp \(S.\,ABC\) có \(SA\) vuông góc với đáy. Tam giác \(ABC\) vuông cân tại \(B\), biết \(SA = AC = 2a\). Thể tích khối chóp \(S.ABC\) là
Trong không gian \(Oxyz\) cho \(A\left( {0;1;2} \right),\,\,B\left( {0;1;0} \right),\,\,C\left( {3;1;1} \right)\) và mặt phẳng \(\left( Q \right):\,\,x + y + z - 5 = 0\). Xét điểm \(M\) thay đổi thuộc \(\left( Q \right)\). Giá trị nhỏ nhất của biểu thức \(M{A^2} + M{B^2} + M{C^2}\) bằng:
Cho khối nón có độ dài đường sinh bằng \(2a\), góc giữa đường sinh và đáy bằng \({60^0}\). Thể tích của khối nón đã cho là:
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Số nghiệm của phương trình \(2f\left( x \right) - 3 = 0\) là:
Tính thể tích của khối tứ diện đều có tất cả các cạnh bằng \(a\).
Trong không gian \(Oxyz\), mặt phẳng \(\left( {Oxy} \right)\) có phương trình là:
Trong không gian Oxyz, đường thẳng \(d:\,\,\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{z}{3}\) đi qua điểm nào dưới đây:
Tập nghiệm của bất phương trình \({\left( {\dfrac{1}{3}} \right)^{{x^2} + 2x}} > \dfrac{1}{{27}}\) là:
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y + 2z - 10 = 0\). Phương trình mặt phẳng \(\left( Q \right)\) với \(\left( Q \right)\) song song với \(\left( P \right)\) và khoảng cách giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) bằng \(\dfrac{7}{3}\) là:
Cho \(\int\limits_0^1 {\dfrac{{xdx}}{{{{\left( {2x + 1} \right)}^2}}}} = a + b\ln 2 + c\ln 3\) với \(a,\,\,b,\,\,c\) là các số hữu tỉ. Giá trị của \(a + b + c\) bằng:
Đặt \({\log _5}3 = a\), khi đó \({\log _{81}}75\) bằng:
Tìm hệ số của đơn thức \({a^3}{b^2}\) trong khai triển của nhị thức \({\left( {a + 2b} \right)^5}\).
Trong không gian \(Oxyz\), cho hai điểm \(A\left( {2;3;4} \right),\,\,B\left( {3;0;1} \right)\). Khi đó độ dài vectơ \(\overrightarrow {AB} \) là: