Câu hỏi Đáp án 2 năm trước 42

Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y + 2z - 10 = 0\). Phương trình mặt phẳng \(\left( Q \right)\) với \(\left( Q \right)\) song song với \(\left( P \right)\) và khoảng cách giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) bằng \(\dfrac{7}{3}\) là:

A. \(x + 2y + 2z - 3 = 0,\,\,x + 2y + 2z + 17 = 0\) 

B. \(x + 2y + 2z + 3 = 0,\,\,x + 2y + 2z + 17 = 0\) 

C. \(x + 2y + 2z + 3 = 0,\,\,x + 2y + 2z - 17 = 0\) 

D. \(x + 2y + 2z - 3 = 0,\,\,x + 2y + 2z - 17 = 0\) 

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Do \(\left( Q \right)\) song song với \(\left( P \right)\) nên phương trình mặt phẳng \(\left( Q \right)\) có dạng \(\left( Q \right):\,\,x + 2y + 2z + d = 0\,\,\left( {d \ne  - 10} \right)\).

Ta có: \(d\left( {M;\left( Q \right)} \right) = \dfrac{7}{3} \Leftrightarrow \dfrac{{\left| {10 + d} \right|}}{3} = \dfrac{7}{3} \Leftrightarrow \left| {10 + d} \right| = 7 \Leftrightarrow \left[ \begin{array}{l}d =  - 3\\d =  - 17\end{array} \right.\).

Vậy phương trình mặt phẳng \(\left( Q \right)\) là \(x + 2y + 2z - 3 = 0,\,\,x + 2y + 2z - 17 = 0\).

Chọn D.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \({9^x} + {6^x} - m{.4^x} = 0\) có nghiệm là:

Xem lời giải » 2 năm trước 51
Câu 2: Trắc nghiệm

Cho hàm số có đồ thị như hình vẽ. Giá trị cực đại của hàm số bằng:

Xem lời giải » 2 năm trước 48
Câu 3: Trắc nghiệm

Cho hình chóp \(S.\,ABC\) có \(SA\) vuông góc với đáy. Tam giác \(ABC\) vuông cân tại \(B\), biết \(SA = AC = 2a\). Thể tích khối chóp \(S.ABC\) là 

Xem lời giải » 2 năm trước 46
Câu 4: Trắc nghiệm

Trong không gian \(Oxyz\) cho \(A\left( {0;1;2} \right),\,\,B\left( {0;1;0} \right),\,\,C\left( {3;1;1} \right)\) và mặt phẳng \(\left( Q \right):\,\,x + y + z - 5 = 0\). Xét điểm \(M\) thay đổi thuộc \(\left( Q \right)\). Giá trị nhỏ nhất của biểu thức \(M{A^2} + M{B^2} + M{C^2}\) bằng:

Xem lời giải » 2 năm trước 45
Câu 5: Trắc nghiệm

Cho khối nón có độ dài đường sinh bằng \(2a\), góc giữa đường sinh và đáy bằng \({60^0}\). Thể tích của khối nón đã cho là: 

Xem lời giải » 2 năm trước 45
Câu 6: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Số nghiệm của phương trình \(2f\left( x \right) - 3 = 0\) là:

Xem lời giải » 2 năm trước 44
Câu 7: Trắc nghiệm

Họ nguyên hàm của hàm số \(f\left( x \right) = \sin x + x\ln x\) là: 

Xem lời giải » 2 năm trước 43
Câu 8: Trắc nghiệm

Tính thể tích của khối tứ diện đều có tất cả các cạnh bằng \(a\). 

Xem lời giải » 2 năm trước 42
Câu 9: Trắc nghiệm

Trong không gian \(Oxyz\), mặt phẳng \(\left( {Oxy} \right)\) có phương trình là: 

Xem lời giải » 2 năm trước 42
Câu 10: Trắc nghiệm

Trong không gian Oxyz, đường thẳng \(d:\,\,\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{z}{3}\) đi qua điểm nào dưới đây:

Xem lời giải » 2 năm trước 42
Câu 11: Trắc nghiệm

Tìm hệ số của đơn thức \({a^3}{b^2}\) trong khai triển của nhị thức \({\left( {a + 2b} \right)^5}\). 

Xem lời giải » 2 năm trước 42
Câu 12: Trắc nghiệm

Tập nghiệm của bất phương trình \({\left( {\dfrac{1}{3}} \right)^{{x^2} + 2x}} > \dfrac{1}{{27}}\) là:

Xem lời giải » 2 năm trước 41
Câu 13: Trắc nghiệm

Cho \(\int\limits_0^1 {\dfrac{{xdx}}{{{{\left( {2x + 1} \right)}^2}}}}  = a + b\ln 2 + c\ln 3\) với \(a,\,\,b,\,\,c\) là các số hữu tỉ. Giá trị của \(a + b + c\) bằng: 

Xem lời giải » 2 năm trước 41
Câu 14: Trắc nghiệm

Đặt \({\log _5}3 = a\), khi đó \({\log _{81}}75\) bằng: 

Xem lời giải » 2 năm trước 41
Câu 15: Trắc nghiệm

Tìm tập hợp tất cả giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {2m - 1} \right)x + 2019\) đồng biến trên \(\left( {2; + \infty } \right)\). 

Xem lời giải » 2 năm trước 40

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »