Khẳng định nào dưới đây về tính đơn điệu của hàm số \(y = {x^3} + 3{x^2} - 9x - 2019\) là đúng ?
A. Nghịch biến trên khoảng \(\left( { - \infty ; - 3} \right)\)
B. Nghịch biến trên khoảng \(\left( { - 3;1} \right)\)
C. Đồng biến trên khoảng \(\left( { - 3;1} \right)\)
D. Nghịch biến trên khoảng \(\left( {1; + \infty } \right)\)
Lời giải của giáo viên
TXĐ : \(D = \mathbb{R}\)
Ta có \(y' = 3{x^2} + 6x - 9\)
+) \(y' > 0 \Leftrightarrow 3{x^2} + 6x - 9 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 1\\x < - 3\end{array} \right.\) hay hàm số đồng biến trên \(\left( { - \infty ; - 3} \right);\,\left( {1; + \infty } \right)\)
+) \(y' < 0 \Leftrightarrow 3{x^2} + 6x - 9 < 0 \Leftrightarrow - 3 < x < 1\) hay hàm số nghịch biến trên \(\left( { - 3;1} \right)\)
Chọn B
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Phương trình \(f\left( x \right) = m\) (\(m\) là tham số) có nhiều nhất bao nhiêu nghiệm trong khoảng \(\left( { - 2;6} \right)\)?
Hình nón bán kính đáy \(R\) và đường sinh \(l\) thì có diện tích xung quanh bằng
Tiếp tuyến với đồ thị hàm số \(y = {x^4} - 3{x^2} + 2018\) tại điểm có hoành độ bằng \(1\) có phương trình
Cho hai số thực \(x;y\) thỏa mãn \(0 < x < 1 < y\). Trong các bất đẳng thức sau, có bao nhiêu bất đẳng thức đúng?
\(\left( 1 \right)\,{\log _x}\left( {1 + y} \right) > {\log _{\frac{1}{y}}}x\)
\(\left( 2 \right)\,{\log _y}\left( {1 + x} \right) > {\log _x}y\)
\(\left( 3 \right)\,{\log _y}x < {\log _{1 + x}}\left( {1 + y} \right)\)
Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = \dfrac{x}{2} - \sqrt {{x^2} - x + m} \) đồng biến trên \(\left( { - \infty ;2} \right)\).
Cho hàm số \(y = {x^3} + 1\) có đồ thị \(\left( C \right)\). Tìm điểm có hoành độ dương trên đường thẳng \(d:y = x + 1\) mà qua đó kẻ được đúng hai tiếp tuyến tới \(\left( C \right).\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang cân \(\left( {AB//CD} \right)\). Biết \(AD = 2\sqrt 5 ;AC = 4\sqrt 5 ;AC \bot AD;SA = SB = SC = SD = 7.\) Tính khoảng cách giữa hai đường thẳng \(SA,CD.\)
Hàm số \(y = {x^4} - 2{x^2} + 3\) có số điểm cực trị là
Cho \(\dfrac{{{5^2}\sqrt[3]{5}}}{{{5^{\frac{1}{2}}}}} = {5^x}\) . Giá trị của \(x\) là
Có bao nhiêu số tự nhiên có \(5\) chữ số khác nhau?
Cắt khối trụ có bán kính đáy bằng \(5\) và chiều cao bằng \(10\) bởi một mặt phẳng song song với trục và cách trục một khoảng bằng \(3\) ta được thiết diện là
Tính đạo hàm của hàm số \(y = \ln \left( {{x^2} + x + 1} \right)\).
Cho \(a > 0\) và \(a \ne 1.\) Giá trị của biểu thức \({a^{{{\log }_{\sqrt a }}3}}\) bằng