Câu hỏi Đáp án 2 năm trước 19

Một cái cốc hình trụ có bán kính đáy là 2cm , chiều cao 20cm . Trong cốc đang có một ít nước, khoảng cách giữa đáy cốc và mặt nước là 12cm (Hình vẽ). Một con quạ muốn uống được nước trong cốc thì mặt nước phải cách miệng cốc không quá 6cm . Con quạ thông minh mổ những viên bi đá hình cầu có bán kính 0,6cm thả vào cốc nước để mực nước dâng lên. Để uống được nước thì con quạ cần thả vào cốc ít nhất bao nhiêu viên bi?

A. 29

B. 30

C. 28

Đáp án chính xác ✅

D. 27

Lời giải của giáo viên

verified HocOn247.com

Để uống được nước thì con quạ phải thả các viên bi vào cốc sao cho mực nước trong cốc dâng lên ít nhất:

20 -12 - 6 = 2( cm)

Khi đó, thể tích của mực nước dâng lên là:   \(\pi {R^2}.h = \pi {.2^2}.2 = 8\pi \left( {c{m^3}} \right)\)

Thể tích của một viên bi là:\(\frac{4}{3}\pi {r^3} = \frac{4}{3}\pi .0,{6^3} = 0,288\pi \left( {c{m^3}} \right)\)

Ta có: \(8\pi :0,288\pi  \approx 27,8 \Rightarrow \) Số viên bi ít nhất mà quạ phải thả vào là: 28 viên.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Có tất cả bao nhiêu giá trị nguyên của tham số  để phương trình \({\log _{\sqrt 2 }}\left( {x - 1} \right) = {\log _2}\left( {mx - 8} \right)\) có hai nghiệm phân biệt?

Xem lời giải » 2 năm trước 147
Câu 2: Trắc nghiệm

Cho hàm số \(f\left( x \right) = \frac{{x - {m^2}}}{{x + 8}}\) với m là tham số thực. Giả sử m0 là giá trị dương của tham số m để hàm số có giá trị nhỏ nhất trên đoạn [0;3] bằng -3. Giá trị m0 thuộc khoảng nào trong các khoảng cho dưới đây?

Xem lời giải » 2 năm trước 146
Câu 3: Trắc nghiệm

Cho khối lăng trụ ABC.A’B’C’ có thể tích bằng 72 cm3. Gọi M là trung điểm của đoạn thẳng BB’. Tính thể tích khối tứ diện ABCM. 

Xem lời giải » 2 năm trước 49
Câu 4: Trắc nghiệm

Phương trình \(\left( {{2^x} - 5} \right)\left( {{{\log }_2}x - 3} \right) = 0\) có hai nghiệm \({x_1},{x_2}\) (với \({x_1} < {x_2}\) . Tính giá trị của biểu thức \(K = {x_1} + 3{x_2}\)

Xem lời giải » 2 năm trước 48
Câu 5: Trắc nghiệm

Hàm số \(y = \frac{{{x^3}}}{3} - 3{x^2} + 5x - 2\) nghịch biến trên khoảng nào dưới đây?

Xem lời giải » 2 năm trước 48
Câu 6: Trắc nghiệm

Cho hàm số \(y = \frac{{x + 2}}{{2x + 3}}\) có đồ thị (C). Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C), biết d cắt trục hoành tại A và cắt trục tung tại B sao cho tam giác OAB cân tại O, với O là gốc tọa độ. Tính a + b 

Xem lời giải » 2 năm trước 44
Câu 7: Trắc nghiệm

Cho hàm số y = f(x) có bảng biến thiên như sau:

Tìm tất cả giá trị thực của tham số m sao cho phương trình f(x) = m có đúng hai nghiệm.

Xem lời giải » 2 năm trước 44
Câu 8: Trắc nghiệm

Gọi R,l,h lần lượt là bán kính đáy, độ dài đường sinh, chiều cao của hình nón (N). Diện tích xung quanh Sxq của hình nón là 

Xem lời giải » 2 năm trước 44
Câu 9: Trắc nghiệm

Cho tứ diện ABCD có AB,AC,AD đôi một góc vuông, AB =4cm, AC =5cm, AD= 3cm. Thể tích khối tứ diện ABCD bằng

Xem lời giải » 2 năm trước 43
Câu 10: Trắc nghiệm

Cho hình chóp tứ giác đều có tất cả các cạnh bằng 2a. Bán kính mặt cầu ngoại tiếp hình chóp đã cho bằng

Xem lời giải » 2 năm trước 43
Câu 11: Trắc nghiệm

Tìm tập xác định của hàm số \(y = \frac{1}{{1 - \ln x}}\)

Xem lời giải » 2 năm trước 43
Câu 12: Trắc nghiệm

Mặt cầu có bán kính a thì có diện tích xung quang bằng

Xem lời giải » 2 năm trước 43
Câu 13: Trắc nghiệm

Hàm số nào sau đây nghịch biến trên mỗi khoảng xác định của nó?

Xem lời giải » 2 năm trước 43
Câu 14: Trắc nghiệm

Cho khối chóp tứ giác đều  S.ABCD có thể tích bằng a3 và đáy ABCD là hình vuông cạnh a. Tính \(cos\alpha \) với \(\alpha \) là góc giữa mặt bên và mặt đáy

Xem lời giải » 2 năm trước 42
Câu 15: Trắc nghiệm

Biết rằng đồ thị hàm số \(y = {x^3} - 4{x^2} + 5x - 1\) cắt đồ thị hàm số y = 1 tại hai điểm phân biệt A và B. Tính độ dài đoạn bằng AB.

Xem lời giải » 2 năm trước 41

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »