Câu hỏi Đáp án 2 năm trước 18

Một con cá hồi bơi ngược dòng để vượt một khoảng cách là \(400\left( {{\rm{km}}} \right).\) Vận tốc dòng nước là \(10\left( {{\rm{km/h}}} \right).\) Nếu vận tốc bơi của cá khi nước đứng yên là \(v\left( {{\rm{km/h}}} \right)\) thì năng lượng tiêu hao của cá trong \(t\) giờ được cho bởi công thức \(E\left( v \right) = c{v^3}t,\) trong đó \(c\) là một hằng số, \(E\) được tính bằng jun. Tìm vận tốc của cá khi nước đứng yên để năng lượng tiêu hao là ít nhất.

A. \(12\left( {km/h} \right)\).

B. \(15\left( {km/h} \right)\).

Đáp án chính xác ✅

C. \(18\left( {km/h} \right)\).

D. \(20\left( {km/h} \right)\)

Lời giải của giáo viên

verified HocOn247.com

Với vận tốc tự thân là \(v\left( {{\rm{km/h}}} \right)\), vận tốc dòng nước là \(10\left( {{\rm{km/h}}} \right).\) thì

Vận tốc di chuyển ngược dòng của con cá hồi là : \(v - 10{\rm{ (km/h)}}\)

Thời gian để con cá hồi vượt \(400\left( {{\rm{km}}} \right)\) ngược dòng nước là : \(t = \frac{{400}}{{v - 10}}{\rm{ (km)  }}\left( {v > 10} \right)\)

Như thế lượng năng lượng tiêu hao của con cá hồi là: \(E\left( v \right) = c{v^3}t = 400c \cdot \frac{{{v^3}}}{{v - 10}}{\rm{ (jun)}}\)

Xét hàm số \(f\left( v \right) = \frac{{{v^3}}}{{v - 10}}\) với \(v > 10\) ta có \(f'\left( v \right) = \frac{{2{v^2}\left( {v - 15} \right)}}{{{{\left( {v - 10} \right)}^2}}}.\)

Bảng biến thiên của \(f\left( v \right)\) trên khoảng \(\left( {10; + \infty } \right).\)

\(E\left( v \right)\) nhỏ nhất \( \Leftrightarrow f\left( v \right)\) nhỏ nhất \( \Leftrightarrow v = 15.\)

Vậy nếu vận tốc tự thân của cá hồi là \(15{\rm{ (km/h)}}\) thì năng lượng tiêu hao của nó thấp nhất.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong các mệnh đề sau đây mệnh đề nào sai?

Xem lời giải » 2 năm trước 51
Câu 2: Trắc nghiệm

Cho hình chóp tứ giác đều có tất cả các cạnh bằng nhau, đường cao của một mặt bên là \(a\sqrt 3 .\) Thể tích V của khối chóp đó là bao nhiêu?

Xem lời giải » 2 năm trước 42
Câu 3: Trắc nghiệm

Trong các hình sau, hình nào là khối đa diện?

Xem lời giải » 2 năm trước 42
Câu 4: Trắc nghiệm

Cho hàm số \(y = {x^2} + 5x + 4\) có đồ thị \(\left( C \right)\). Tìm tiếp tuyến của \(\left( C \right)\) tại các giao điểm của \(\left( C \right)\) với trục \(Ox\).

Xem lời giải » 2 năm trước 39
Câu 5: Trắc nghiệm

Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng nào?

Xem lời giải » 2 năm trước 39
Câu 6: Trắc nghiệm

Cho hình chóp \(S.ABCD\), tứ giác \(ABCD\) đáy là hình thang vuông tại \(A\) và \(B\), \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Biết \(AB = 2CD = 2AD\). Mệnh đề nào sau đây sai?

Xem lời giải » 2 năm trước 38
Câu 7: Trắc nghiệm

Tổng tất cả các nghiệm của phương trình \(\frac{{\left( {2\cos x - 1} \right)\left( {\sin 2x - \cos x} \right)}}{{\sin x - 1}} = 0\) trên \(\left[ {0;\,\frac{\pi }{2}} \right]\) là \(T\) bằng bao nhiêu?

Xem lời giải » 2 năm trước 37
Câu 8: Trắc nghiệm

Trong măt phẳng \(Oxy\) cho điểm \(M\left( { - 2;4} \right)\). Phép vị tự tâm \(O\) tỉ số \(k =  - 2\) biến điểm \(M\) thành điểm nào trong các điểm sau?

Xem lời giải » 2 năm trước 37
Câu 9: Trắc nghiệm

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}m\frac{{{x^2} - 4}}{{{x^2} - 3x + 2}} + {n^2},\,\,\,\,khi\,\,x > 2\\nx - {m^2} - 5,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x \le 2\end{array} \right.\) Tìm \(m,\,\,n\) để hàm số có giới hạn tại \(x = 2.\)

Xem lời giải » 2 năm trước 37
Câu 10: Trắc nghiệm

Bảng biến thiên dưới đây là của hàm số nào?

Xem lời giải » 2 năm trước 36
Câu 11: Trắc nghiệm

Nếu \(P(A).P(B) = P(A \cap B)\) thì \(A,B\) là 2 biến cố như thế nào?

Xem lời giải » 2 năm trước 36
Câu 12: Trắc nghiệm

Cho lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(G,G'\) lần lượt là trọng tâm của tam giác \(ABC\) và \(A'B'C'\), \(O\) là trung điểm của \(GG'\). Thiết diện tạo bởi mặt phẳng \(\left( {ABO} \right)\) với lăng trụ là một hình thang. Tính tỉ số \(k\) giữa đáy lớn và đáy bé của thiết diện.

Xem lời giải » 2 năm trước 35
Câu 13: Trắc nghiệm

Cho hàm số \(y = {x^4} - 2{x^2}\). Mệnh đề nào dưới đây là đúng?

Xem lời giải » 2 năm trước 35
Câu 14: Trắc nghiệm

Cho tứ diện \(ABCD\). \(G\) là trọng tâm tam giác \(BCD\). Tìm giao tuyến của hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {GAB} \right).\)

Xem lời giải » 2 năm trước 35
Câu 15: Trắc nghiệm

Phương trình \(\sin \left( {3x + \frac{\pi }{3}} \right) =  - \frac{{\sqrt 3 }}{2}\) có bao nhiêu nghiệm thuộc khoảng \(\left( {0;\frac{\pi }{2}} \right)\)?

Xem lời giải » 2 năm trước 35

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »