Một hộp đựng 40 tấm thẻ được đánh số thứ tự từ 1 đến 40. Rút ngẫu nhiên 10 tấm thẻ. Tính xác suất để lấy được 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn, trong đó có đúng một thẻ mang số chia hết cho 6.
A. \(\frac{126}{1147}\)
B. \(\frac{252}{1147}\)
C. \(\frac{26}{1147}\)
D. \(\frac{12}{1147}\)
Lời giải của giáo viên
Số cách chọn 10 tấm thẻ bất kì trong 40 tấm thẻ đã cho là: \({{n}_{\Omega }}=C_{40}^{10}\) cách chọn.
Gọi biến cố A: “Chọn được 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn, trong đó có đúng 1 tấm thẻ chia hết cho 6”.
Số thẻ chia hết cho 6 được chọn trong các số: 6; 12; 18; 24; 30; 36.
\(\Rightarrow {{n}_{A}}=C_{20}^{5}.C_{14}^{4}.C_{6}^{1}\) cách chọn.
\(\Rightarrow P\left( A \right)=\frac{{{n}_{A}}}{{{n}_{\Omega }}}=\frac{C_{20}^{5}C_{14}^{4}C_{6}^{1}}{C_{40}^{10}}=\frac{126}{1147}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Đồ thị hàm số \(y=\frac{{{x}^{4}}}{2}-{{x}^{2}}+3\) có mấy điểm cực trị
Cho hàm số \(y=a{{x}^{4}}+b{{x}^{2}}+c\) có đồ thị như hình vẽ bên.
Mệnh đề nào dưới đây đúng?
Cho lăng trụ đứng tam giác ABC.A'B'C'. Biết tam giác ABC đều cạnh a và \(AA'=a\sqrt{3}.\) Góc giữa hai đường thẳng AB' và mặt phẳng (A'B'C') bằng bao nhiêu?
Tính thể tích V của khối lập phương ABCD.A'B'C'D'. Biết \(AC'=a\sqrt{3}.\)
Cho hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+1\). Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\left| f\left( \sin x+\sqrt{3}\cos x \right)+m \right|\) có giá trị nhỏ nhất không vượt quá 5?
Hàm số \(y=\left| {{\left( x-1 \right)}^{3}}\left( x+1 \right) \right|\) có bao nhiêu điểm cực trị?
Tìm giá trị thực của tham số \(m\) để đường thẳng \(d:y=\left( 3m+1 \right)x+3+m\) vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}-1.\)
Cho đồ thị hàm số \(y=\frac{\sqrt{4-{{x}^{2}}}}{{{x}^{2}}-3x-4}\) có tất cả bao nhiêu đường tiệm cận?
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và \(SA=2\sqrt{3}a.\) Tính thể tích V của khối chóp S.ABC.
Có bao nhiêu số có ba chữ số đôi một khác nhau mà các chữ số đó thuộc tập hợp \(\left\{ 1;2;3;...;9 \right\}?\)
Có tất cả 120 các chọn 3 học sinh từ nhóm n (chưa biết) học sinh. Số n là nghiệm của phương trình nào sau đây?
Cho hình chóp S.ABCD đáy là hình chữ nhật có \(AB=2a\sqrt{3},AD=2a.\) Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABD là:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \(a\) và mặt bên tạo với đáy một góc 45°. Thể tích \(V\) của khối chóp S.ABCD là: