Một người gửi 100 triệu đồng vào một ngân hàng với lãi suất 0,4%/tháng. Biết rằng nếu không rút tiền khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau đúng 6 tháng, người đó được lĩnh số tiền (cả vốn ban đầu và lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.423.000 đồng.
B. 102.017.000 đồng.
C. 102.016.000 đồng
D. 102.424.000 đồng.
Lời giải của giáo viên
Công thức lãi kép, không kỳ hạn: \({A_n} = M{\left( {1 + r\% } \right)^n}\)
Với: An là số tiền nhận được sau tháng thứ n,
M là số tiền gửi ban đầu,
n là thời gian gửi tiền (tháng),
r là lãi suất định kì (%)
Sau đúng 6 tháng, người đó được lĩnh số tiền là:
\(100.{\left( {1 + 0,4\% } \right)^6} \approx 102.424.000\) đồng.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối lăng trụ tứ giác đều ABCD. A 'B 'C 'D ' có khoảng cách giữa AB và A’D bằng 2, đường chéo của mặt bên bằng 5. Biết AA' > AD. Thể tích lăng trụ là
Biết đồ thị của hàm số \(y = {x^4} - 2m{x^2} + 1\) có ba điểm cực trị \(A\left( {0;1} \right),B,C\). Các giá trị của tham số m để BC = 4 là:
Một vật chuyển động với gia tốc \(a\left( t \right) = 6t\left( {m/{s^2}} \right)\). Vận tốc của vật tại thời điểm t = 2 giây là 17 m / s . Quãng đường vật đó đi được trong khoảng thời gian từ thời điểm t = 4 giây đến thời điểm t = 10 giây là:
Đồ thị hình bên là của hàm số nào trong các hàm số dưới đây?
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Mệnh đề nào dưới đây sai?
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B, \(AB = a,SA = 2a,SA \bot \left( {ABC} \right)\). Bán kính của mặt cầu ngoại tiếp hình chóp S.ABC là:
Số đường tiệm cận của đồ thị hàm số \(y = \frac{{x + 2}}{{x - 1}}\) là
Họ nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{x} + \frac{1}{{{x^3}}}\) là:
Số nghiệm của phương trình \({\log _3}\left( { - x} \right) + {\log _3}\left( {x + 3} \right) = {\log _3}5\) là:
Họ nguyên hàm của hàm số \(f\left( x \right) = {\tan ^2}x\) là
Thể tích khối tròn xoay được tạo thành khi quay quanh trục Ox hình phẳng (H) được giới hạn bởi các đường \(y=f(x)\) liên tục trên đoạn [a;b] trục Ox và hai đường thẳng x = a, x = b là:
Cho khối lăng trụ tam giác đều ABC.A’B’C’ có chiều cao là a và \(AB' \bot BC'\). Thể tích lăng trụ là
Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau. Một bạn học sinh cần chọn 1 cái bút và 1 quyển sách. Hỏi bạn học sinh đó có bao nhiêu cách chọn?
Một hình hộp chữ nhật có ba kích thước là a, b, c. Gọi (S) là mặt cầu đi qua 8 đỉnh của hình hộp chữ nhật đó. Diện tích của hình cầu (S) theo a, b, c bằng
Hàm số \(y=f(x)\) có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(2f\left( x \right) - 1 = 0\) là