Một người mau một căn hộ trị giá \(800\) triệu theo hình thức trả góp với lãi suất \(0,8\% \)/tháng. Lúc đầu người đó trả \(200\) triệu, số tiền còn lại mỗi tháng người đó trả cả gốc lẫn lãi \(20\) triệu. Hỏi sau ít nhất bao nhiêu tháng người đó trả hết nợ, biết rằng lãi suất chỉ tính trên số tiền còn nợ? (Kết quả làm tròn đến hàng đơn vị)
A. \(36\)
B. \(35\)
C. \(37\)
D. \(34\)
Lời giải của giáo viên
Sau khi trả \(200\) triệu thì người đó còn nợ \(800 - 200 = 600\) triệu.
Theo công thức lãi kép cho bài toán trả góp ta có:
\(T = 600,A = 20,r = 0,8\% \) \(20 = \dfrac{{600{{\left( {1 + 0,8\% } \right)}^N}.0,8\% }}{{{{\left( {1 + 0,8\% } \right)}^N} - 1}} \Leftrightarrow 4,8.1,{008^N} = 20.1,{008^N} - 20 \Leftrightarrow 1,{008^N} = \dfrac{{20}}{{15,2}} \Leftrightarrow N \approx 34,44\)
Vậy sau ít nhất \(35\) tháng người đó mới trả hết nợ.
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Phương trình \(f\left( x \right) = m\) (\(m\) là tham số) có nhiều nhất bao nhiêu nghiệm trong khoảng \(\left( { - 2;6} \right)\)?
Hình nón bán kính đáy \(R\) và đường sinh \(l\) thì có diện tích xung quanh bằng
Tiếp tuyến với đồ thị hàm số \(y = {x^4} - 3{x^2} + 2018\) tại điểm có hoành độ bằng \(1\) có phương trình
Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = \dfrac{x}{2} - \sqrt {{x^2} - x + m} \) đồng biến trên \(\left( { - \infty ;2} \right)\).
Cho hai số thực \(x;y\) thỏa mãn \(0 < x < 1 < y\). Trong các bất đẳng thức sau, có bao nhiêu bất đẳng thức đúng?
\(\left( 1 \right)\,{\log _x}\left( {1 + y} \right) > {\log _{\frac{1}{y}}}x\)
\(\left( 2 \right)\,{\log _y}\left( {1 + x} \right) > {\log _x}y\)
\(\left( 3 \right)\,{\log _y}x < {\log _{1 + x}}\left( {1 + y} \right)\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang cân \(\left( {AB//CD} \right)\). Biết \(AD = 2\sqrt 5 ;AC = 4\sqrt 5 ;AC \bot AD;SA = SB = SC = SD = 7.\) Tính khoảng cách giữa hai đường thẳng \(SA,CD.\)
Cho hàm số \(y = {x^3} + 1\) có đồ thị \(\left( C \right)\). Tìm điểm có hoành độ dương trên đường thẳng \(d:y = x + 1\) mà qua đó kẻ được đúng hai tiếp tuyến tới \(\left( C \right).\)
Hàm số \(y = {x^4} - 2{x^2} + 3\) có số điểm cực trị là
Cho \(\dfrac{{{5^2}\sqrt[3]{5}}}{{{5^{\frac{1}{2}}}}} = {5^x}\) . Giá trị của \(x\) là
Có bao nhiêu số tự nhiên có \(5\) chữ số khác nhau?
Cắt khối trụ có bán kính đáy bằng \(5\) và chiều cao bằng \(10\) bởi một mặt phẳng song song với trục và cách trục một khoảng bằng \(3\) ta được thiết diện là
Cho số thực dương \(x\), biểu thức rút gọn của \(P = \dfrac{{\sqrt[3]{x}.{x^{ - 2}}.{x^3}}}{{\sqrt x .\sqrt[6]{x}}}\) là:
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(B;BA = a;SA = a\sqrt 2 \) và \(SA\) vuông góc với mặt phẳng đáy. Góc giữa \(SC\) và mặt phẳng \(\left( {SAB} \right)\) bằng bao nhiêu?