Câu hỏi Đáp án 2 năm trước 39

Một nhóm gồm \(10\) học sinh trong đó có \(7\) học sinh nam và \(3\) học sinh nữ. Chọn ngẫu nhiên \(3\) học sinh từ nhóm \(10\) học sinh đi lao động. Tính xác suất để \(3\) học sinh được chọn có ít nhất một học sinh nữ?

A. \(\frac{2}{3}\).

B. \(\frac{17}{48}\).

C. \(\frac{17}{24}\).

Đáp án chính xác ✅

D. \(\frac{4}{9}\).

Lời giải của giáo viên

verified HocOn247.com

Số phần tử của không gian mẫu: \(n\left( \Omega  \right)=C_{10}^{3}\).

Gọi \(A\) là biến cố: “\(3\) học sinh được chọn có ít nhất một học sinh nữ”.

Suy ra: \(\overline{A}\) là biến cố: “\(3\) học sinh được chọn không có học sinh nữ”.

Khi đó \(n\left( \overline{A} \right)=C_{7}^{3}\)\(\Rightarrow P\left( \overline{A} \right)=\frac{C_{7}^{3}}{C_{10}^{3}}=\frac{7}{24}\). Vậy \(P\left( A \right)=1-P\left( \overline{A} \right)=\frac{17}{24}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Có bao nhiêu số nguyên m để hàm số \(y={{x}^{3}}-3{{x}^{2}}-mx+4\) có hai điểm cực trị thuộc khoảng \(\left( -3;3 \right).\)

Xem lời giải » 2 năm trước 142
Câu 2: Trắc nghiệm

Hàm số nào trong các hàm số sau đây là một nguyên hàm của hàm số\(y={{e}^{-2x}}?\)

Xem lời giải » 2 năm trước 54
Câu 3: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz , cho vectơ \(\overrightarrow{AO}=3\left( \overrightarrow{i}+4\overrightarrow{j} \right)-2\overrightarrow{k}+5\overrightarrow{j}\). Tìm tọa độ của điểm A .

Xem lời giải » 2 năm trước 49
Câu 4: Trắc nghiệm

Cho số phức \(z=a+bi\) \(\left( a,b\in \mathbb{R} \right)\). Khẳng định nào sau đây sai?

Xem lời giải » 2 năm trước 45
Câu 5: Trắc nghiệm

Trong không gian \(O\,xyz\), cho điểm \(A\left( 1;2;-1 \right)\), đường thẳng \(d:\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-2}{-1}\) và mặt phẳng \(\left( P \right):x+y+2z+1=0\). Điểm B thuộc mặt phẳng \(\left( P \right)\) thỏa mãn đường thẳng AB vừa cắt vừa vuông góc với d. Tọa độ điểm B là:

Xem lời giải » 2 năm trước 44
Câu 6: Trắc nghiệm

Xét các số phức z thỏa mãn \(\left| z+2-i \right|+\left| z-4-7i \right|=6\sqrt{2}\) . Gọi m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của \(\left| z-1+i \right|\) . Tính P=m+M .

Xem lời giải » 2 năm trước 43
Câu 7: Trắc nghiệm

Trong không gian Oxyz, đường thẳng đi qua điểm \(A\left( 1;4;-7 \right)\) và vuông góc với mặt phẳng \(x+2y-2z-3=0\) có phương trình là

Xem lời giải » 2 năm trước 42
Câu 8: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt bên SAB là tam giác vuông cân tại S và nằm trên mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng AB và SC.

Xem lời giải » 2 năm trước 42
Câu 9: Trắc nghiệm

Tìm tọa độ điểm biểu diễn của số phức \(z=\frac{\left( 2-3i \right)\left( 4-i \right)}{3+2i}\).

Xem lời giải » 2 năm trước 42
Câu 10: Trắc nghiệm

Trong không gian \(Oxyz\) cho mặt cầu \(\left( S \right)\) có phương trình:\({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y+4z-7=0\). Xác định tọa độ tâm \(I\) và bán kính \(R\) của mặt cầu\(\left( S \right)\):

Xem lời giải » 2 năm trước 42
Câu 11: Trắc nghiệm

Cho a, b là các số thực dương khác 1 thỏa mãn \({{\log }_{a}}b=\sqrt{3}\). Giá trị của \({{\log }_{\frac{\sqrt{b}}{a}}}\left( \frac{\sqrt[3]{b}}{\sqrt{a}} \right)\) là:

Xem lời giải » 2 năm trước 42
Câu 12: Trắc nghiệm

Số phức liên hợp của số phức z=1-3i là số phức

Xem lời giải » 2 năm trước 42
Câu 13: Trắc nghiệm

Trong không gian với hệ trục \(Oxyz\) , cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=12\) và mặt phẳng \(\left( P \right):2x+2y-z-3=0\) . Viết phương trình mặt phẳng \(\left( Q \right)\) song song với \(\left( P \right)\) và cắt \(\left( S \right)\) theo thiết diện là đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm mặt cầu và đáy là đường tròn \(\left( C \right)\) có thể tích lớn nhất .

Xem lời giải » 2 năm trước 41
Câu 14: Trắc nghiệm

Gọi \({{z}_{1}}\), \({{z}_{2}}\) là hai trong các số phức thỏa mãn \(\left| z-1+2i \right|=5\) và \(\left| {{z}_{1}}-{{z}_{2}} \right|=8\). Tìm môđun của số phức \(w={{z}_{1}}+{{z}_{2}}-2+4i\).

Xem lời giải » 2 năm trước 41
Câu 15: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ sau:

Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( x \right)=m\) có \(3\) nghiệm phân biệt.

Xem lời giải » 2 năm trước 41

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »