Một quân Vua ở giữa một bàn cờ vua (như hình vẽ) di chuyển ngẫu nhiên \(3\) bước, tìm xác suất để sau \(3\) bước nó trở lại vị trí xuất phát (mỗi bước đi, quân Vua chỉ có thể đi sang ô chung đỉnh hoặc ô chung cạnh với ô nó đang đứng).
A. \(\dfrac{7}{{64}}\)
B. \(\dfrac{{13}}{{64}}\)
C. \(\dfrac{3}{{64}}\)
D. \(\dfrac{3}{{16}}\)
Lời giải của giáo viên
Giả sử quân vua đang ở vị trí số \(5\) (hình vẽ). Ta đếm số các cách quân vua đi ngẫu nhiên \(3\) bước.
Bước 1: có \(8\) cách đi.
Bước 2: có \(8\) cách đi.
Bước 3: có \(8\) cách đi.
Do đó có \({8^3}\) cách quân vua đi ngẫu nhiên \(3\) bước.
Ta đếm số cách quân vua đi \(3\) bước mà quay về đúng vị trí đầu.
TH1: Quân vua đi vào vị trí chéo \(\left( {1,3,7,9} \right)\) ở bước đầu tiên.
Nếu đi vào vị trí số \(1\) thì có \(2\) cách đi thỏa mãn là \(1 - 2 - 5\) và \(1 - 4 - 5\).
Tương tự với các vị trí \(3,7,9\), mỗi cách cũng có \(2\) cách đi thỏa mãn.
Nên có \(4.2 = 8\) cách đi thỏa mãn.
TH2: Quân vua đi vào vị trí kề nó \(\left( {2,4,6,8} \right)\) ở bước đầu tiên.
Nếu đi vào vị trí số \(2\) ở bước đầu thì quân vua có \(4\) cách đi là \(2 - 1 - 5;2 - 3 - 5;2 - 4 - 5;2 - 6 - 5\).
Tương tự với các vị trí \(4,6,8\), mỗi cách cũng có \(4\) cách đi thỏa mãn.
Nên có \(4.4 = 16\) cách đi thỏa mãn trong trường hợp này.
Do đó có tất cả \(8 + 16 = 24\) cách đi mà quân vua sau \(3\) bước trở về được vị trí đầu.
Vậy xác suất cần tính \(P = \dfrac{{24}}{{{8^3}}} = \dfrac{3}{{64}}\).
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Phương trình \(f\left( x \right) = m\) (\(m\) là tham số) có nhiều nhất bao nhiêu nghiệm trong khoảng \(\left( { - 2;6} \right)\)?
Hình nón bán kính đáy \(R\) và đường sinh \(l\) thì có diện tích xung quanh bằng
Tiếp tuyến với đồ thị hàm số \(y = {x^4} - 3{x^2} + 2018\) tại điểm có hoành độ bằng \(1\) có phương trình
Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = \dfrac{x}{2} - \sqrt {{x^2} - x + m} \) đồng biến trên \(\left( { - \infty ;2} \right)\).
Cho hai số thực \(x;y\) thỏa mãn \(0 < x < 1 < y\). Trong các bất đẳng thức sau, có bao nhiêu bất đẳng thức đúng?
\(\left( 1 \right)\,{\log _x}\left( {1 + y} \right) > {\log _{\frac{1}{y}}}x\)
\(\left( 2 \right)\,{\log _y}\left( {1 + x} \right) > {\log _x}y\)
\(\left( 3 \right)\,{\log _y}x < {\log _{1 + x}}\left( {1 + y} \right)\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang cân \(\left( {AB//CD} \right)\). Biết \(AD = 2\sqrt 5 ;AC = 4\sqrt 5 ;AC \bot AD;SA = SB = SC = SD = 7.\) Tính khoảng cách giữa hai đường thẳng \(SA,CD.\)
Cho hàm số \(y = {x^3} + 1\) có đồ thị \(\left( C \right)\). Tìm điểm có hoành độ dương trên đường thẳng \(d:y = x + 1\) mà qua đó kẻ được đúng hai tiếp tuyến tới \(\left( C \right).\)
Hàm số \(y = {x^4} - 2{x^2} + 3\) có số điểm cực trị là
Cho \(\dfrac{{{5^2}\sqrt[3]{5}}}{{{5^{\frac{1}{2}}}}} = {5^x}\) . Giá trị của \(x\) là
Có bao nhiêu số tự nhiên có \(5\) chữ số khác nhau?
Cắt khối trụ có bán kính đáy bằng \(5\) và chiều cao bằng \(10\) bởi một mặt phẳng song song với trục và cách trục một khoảng bằng \(3\) ta được thiết diện là
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(B;BA = a;SA = a\sqrt 2 \) và \(SA\) vuông góc với mặt phẳng đáy. Góc giữa \(SC\) và mặt phẳng \(\left( {SAB} \right)\) bằng bao nhiêu?
Tính đạo hàm của hàm số \(y = \ln \left( {{x^2} + x + 1} \right)\).