Người ta đặt được vào một hình nón hai khối cầu có bán kính lần lượt là a và 2a sao cho các khối cầu đều tiếp xúc với mặt xung quanh của hình nón, hai khối cầu tiếp xúc với nhau và khối cầu lớn tiếp xúc với đáy của hình nón. Bán kính đáy của hình nón đã cho là
A. \(\sqrt 2 a.\)
B. \(\sqrt 3 a.\)
C. \(2\sqrt 2 a.\)
D. \(\sqrt 5 a.\)
Lời giải của giáo viên
Giả sử thiết diện qua trục của hình nón là \(\Delta ABC\) với A là đỉnh nón, BC là đường kính đáy nón, H là tâm đáy O1, O2 lần lượt là tâm của mặt cầu lớn và nhỏ D1, D2 lần lượt là tiếp điểm của AC với (O1) và (O2).
Vì \({{O}_{1}}{{D}_{1}}//{{O}_{2}}{{D}_{2}}\) và \({{O}_{1}}{{D}_{1}}=2{{O}_{2}}{{D}_{2}}\) nên O2 là trung điểm AO1
\(\Rightarrow A{{O}_{1}}=2{{O}_{1}}{{O}_{2}}=2.3a=6a\)
\({{O}_{1}}{{D}_{1}}=2a,AH=A{{O}_{1}}+{{O}_{1}}H=8a.\)
Ta có \(A{{D}_{1}}=\sqrt{AO_{1}^{2}-{{O}_{1}}D_{1}^{2}}=4a\sqrt{2}.\)
Từ \(\Delta A{{O}_{1}}{{D}_{1}}\backsim \Delta ACH\Rightarrow \frac{{{O}_{1}}{{D}_{1}}}{CH}=\frac{A{{D}_{1}}}{AH}\Rightarrow CH=2\sqrt{2}a\Rightarrow r=2\sqrt{2}a.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Số phức nào sau đây là số đối của số phức z, biết z có phần thực dương thoả mãn \(\left| z \right|=2\) và biểu diễn số phức z thuộc đường thẳng \(y-\sqrt{3}x=0.\)
Cho hàm số y = f(x) có đạo hàm \({f}'\left( x \right)=\left( x-1 \right){{\left( x+1 \right)}^{6}}{{\left( x-2 \right)}^{5}}.\) Hàm số có bao nhiêu điểm cực trị?
Cho hàm số \(y=\sqrt{x+\frac{1}{x}}\). Giá trị nhỏ nhất của hàm số trên \((0;\,+\infty )\) bằng
Cho hàm số y = f(x) có bảng biến thiên
Khẳng định nào sau đây là đúng?
Nếu \({{\log }_{8}}a+{{\log }_{4}}{{b}^{2}}=5\) và \({{\log }_{4}}{{a}^{2}}+{{\log }_{8}}b=7\) thì giá trị của ab là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC = 2a. Mặt bên SBC là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABC là
Trong không gian với hệ trục toạ độ Oxyz, cho đường thẳng \(\Delta :\frac{x}{2}=\frac{y-1}{-1}=\frac{z}{2}\) và đường thẳng \(d:\frac{x+2}{-1}=\frac{y-1}{2}=\frac{z+1}{2}.\) Góc giữa d và \(\Delta \) bằng
Trong không gian với hệ toạ độ Oxyz, cho điểm \(A\left( 1;-2;1 \right)\) và mặt phẳng (P): x + 2y + 2z – 1 = 0. Khoảng cách từ A đến mặt phẳng (P) bằng
Cho hàm số y = f(x) liên tục trên đoạn \(\left[ \frac{1}{2};2 \right]\) và thoả mãn \(f\left( x \right)+2f\left( \frac{1}{x} \right)=3x;\forall x\in {{\mathbb{R}}^{*}}.\) Tính tích phân \(\int\limits_{\frac{1}{2}}^{2}{\frac{f\left( x \right)}{x}dx}.\)
Tìm hệ số của đơn thức \({{a}^{3}}{{b}^{2}}\) trong khai triển nhị thức \({{\left( a+2b \right)}^{5}}.\)
Nguyên hàm của hàm số \(f\left( x \right)={{3}^{x}}+{{x}^{2}}\) là
Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng \(\left( P \right):2\left( {{m}^{2}}+m+2 \right)x+\left( {{m}^{2}}-1 \right)y+\left( m+2 \right)z+{{m}^{2}}+m+1=0\) luôn chứa đường thẳng \(\Delta \) cố định khi m thay đổi. Khoảng cách từ gốc toạ độ đến \(\Delta \) là
Cho hàm số \(y=\frac{ax+b}{cx+d}\) có đồ thị như hình vẽ. Mệnh đề nào sau đây là mệnh đề đúng?
Đồ thị hàm số nào dưới đây nhận đường thẳng x = 1 là đường tiệm cận đứng?
Tìm các số \(x,y\in \mathbb{R}\) thoả mãn \(\left( 1+2y \right)i=\left( 2i-1 \right)x+1+i.\)