Ông An cần làm một đồ trang trí như hình vẽ. Phần dưới là một phần của khối cầu bán kính \(20\ cm\) làm bằng gỗ đặc, bán kính của đường tròn phần chỏm cầu bằng \(10\ cm\). Phần phía trên làm bằng lớp vỏ kính trong suốt. Biết giá tiền của \(1\ {{m}^{2}}\) kính như trên là 1.500.000 đồng, giá triền của \(1\ {{m}^{3}}\) gỗ là 100.000.000 đồng. Hỏi số tiền (làm tròn đến hàng nghìn) mà ông An mua vật liệu để làm đồ trang trí là bao nhiêu.
A. 1.000.000
B. 1.100.000
C. 1.010.000
D. 1.005.000
Lời giải của giáo viên
Bán kính mặt cầu là R=20 cm; bán kính đường tròn phần chỏm cầu là r=10cm.
Theo hình vẽ ta có \(\sin \alpha =\frac{10}{20}=\frac{1}{2}\Rightarrow \alpha ={{30}^{0}}\).
Diện tích phần làm kính là: \(S=\frac{360-2.30}{360}.4\pi {{.20}^{2}}=\frac{4000\pi }{3}\left( c{{m}^{2}} \right)\).
Xét hình nón đỉnh là tâm mặt cầu, hình tròn đáy có bán kính bằng \(r=10\ cm\ ;\ l=R=20\ cm\Rightarrow h=\sqrt{{{20}^{2}}-{{10}^{2}}}=10\sqrt{3}cm\)
Thể tích phần chỏm cầu bằng
\({{V}_{c\hom cau}}=\frac{2.30}{360}.\frac{4}{3}\pi {{R}^{3}}-\frac{1}{3}\pi {{r}^{2}}.h =\frac{16000\pi }{9}-\frac{1000\pi \sqrt{3}}{3}\ \left( c{{m}^{3}} \right)\)
Vậy số tiền ông An cần mua vật liệu là: \(\frac{4000\pi }{3}.150+\left( \frac{16000\pi }{9}-\frac{1000\pi \sqrt{3}}{3} \right).100\approx 1.005.000\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm tập nghiệm S của phương trình \({{2}^{x+1}}=8\).
Cho \(\int\limits_{1}^{2}{f\left( x \right)\text{d}x=-3}, \int\limits_{2}^{5}{f\left( x \right)\text{d}x=5}\) và \(\int\limits_{1}^{5}{g\left( x \right)\text{d}x=6}\). Tính tích phân \(I=\int\limits_{1}^{5}{\left[ 2.f\left( x \right)-g\left( x \right) \right]\text{d}x}\).
Tính thể tích V của khối lập phương \(ABCD.{A}'{B}'{C}'{D}'\), biết BB'=2m.
Cho số phức \(w=2-3i\). Điểm biểu diễn số phức liên hợp của w có tọa độ là
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( 1;2;-3 \right),B\left( \frac{3}{2};\frac{3}{2};-\frac{1}{2} \right),C\left( 1;1;4 \right),D\left( 5;3;0 \right).\) Gọi \(\left( {{S}_{1}} \right)\) là mặt cầu tâm A bán kính bằng \(3,\left( {{S}_{2}} \right)\) là mặt cầu tâm B bán kính bằng \(\frac{3}{2}.\) Có bao nhiêu mặt phẳng tiếp xúc với 2 mặt cầu \(\left( {{S}_{1}} \right),\left( {{S}_{2}} \right)\) đồng thời song song với đường thẳng đi qua C và D.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\Delta :\left\{ \begin{align} & x=1+t \\ & y=1+t \\ & z=1+2t \\ \end{align} \right.\). Điểm nào sau đây thuộc \(\Delta \)
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có: \({{u}_{1}}=-0,1;\,\,d=0,1\). Số hạng thứ 7 của cấp số cộng này là
Trong không gian Oxyz, đường thẳng đi qua gốc tọa độ O và điểm \(B\left( 1;2;3 \right)\) có phương trình tham số là:
Cho hình lăng trụ đều \(ABC.{A}'{B}'{C}'\) có cạnh đáy bằng a, cạnh bên bằng \(a\sqrt{3}\). Góc giữa đường thẳng \({B}'C\) với mặt phẳng đáy bằng
Chọn ngẫu nhiên 2 số trong 10 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tích là một số chẵn là:
Cho biểu thức \(P=\sqrt[4]{{{x}^{5}}}\), với x>0. Mệnh đề nào dưới đây là mệnh đề đúng?
Có bao nhiêu giá trị nguyên của tham số \(m\in \left( -2020;2020 \right)\) để \(2{{\text{a}}^{\sqrt{{{\log }_{a}}b}}}\text{ - }{{\text{b}}^{\sqrt{{{\log }_{b}}a}}}>m\sqrt{{{\log }_{a}}b}+1\) với a,b là các số thực lớn hơn 1?
Có bao nhiêu số nguyên dương x sao cho ứng với mỗi x có không quá 10 số nguyên y thỏa mãn \(\left( {{3}^{y+3}}-3 \right)\left( {{3}^{y}}-x \right)>0\,\,?\)
Trong không gian với hệ tọa độ Oxyz, tâm và bán kính của mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+4x-2y+6z+5=0\) là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có \(AB=a,\,BC=a\sqrt{3}\). Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( ABC \right)\). Tính thể tích V của khối khóp S.ABC.