Ông An có một khu vườn giới hạn bởi đường parabol và đường thẳng. Nếu đặt trong hệ tọa độ Oxy như hình vẽ thì parabol có phương trình \(y={{x}^{2}}\) và đường thẳng là y=25. Ông An dự định dung một mảnh vườn nhỏ được chia từ khu vườn bởi đường thẳng đi qua điểm O và M trên parabol để trồng một loại hoa. Hãy giúp ông An xác định điểm M bằng cách tính độ dài OM để diện tích mảnh vườn nhỏ bằng \(\frac{9}{2}\).
A. OM = 10
B. \(OM = 2\sqrt 5 \)
C. OM = 15
D. \(OM = 3\sqrt {10} \)
Lời giải của giáo viên
Do parabol có tính đối xứng qua trục tung nên ta có thể giả sử \(M(a;\,{{a}^{2}})\,\,\left( 0<a<5 \right)\)
Suy ra pt đường thẳng y=ax.
Từ đồ thị, ta có diện tích mảnh vườn trồng hoa: \(S=\int\limits_{0}^{a}{\left( ax-{{x}^{2}} \right)}dx\)
\(\left. \left( \frac{a{{x}^{2}}}{2}-\frac{{{x}^{3}}}{3} \right) \right|_{0}^{a}=\frac{9}{2}\Leftrightarrow \frac{{{a}^{3}}}{6}=\frac{9}{2}\Leftrightarrow a=3\Rightarrow M\left( 3;9 \right)\)
\(\Rightarrow OM=\sqrt{M{{H}^{2}}+O{{H}^{2}}}=\sqrt{{{3}^{2}}+{{9}^{2}}}=3\sqrt{10}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, điểm \(M\left( 3;4;-2 \right)\) thuộc mặt phẳng nào trong các mặt phẳng sau?
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( {{S}_{m}} \right):{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-m \right)}^{2}}=\frac{{{m}^{2}}}{4}\) và hai điểm \(A\left( 2;3;5 \right), B\left( 1;2;4 \right)\). Tìm giá trị nhỏ nhất của m để trên \(\left( {{S}_{m}} \right)\) tồn tại điểm M sao cho \(M{{A}^{2}}-M{{B}^{2}}=9\).
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy, SA=2a. Tính theo a thể tích khối chóp S.ABCD.
Đạo hàm của hàm số \(f\left( x \right)={{6}^{1-3x}}\) là:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
Hỏi đồ thị hàm số \(g\left( x \right)=\left| f\left( x-2018 \right)+2019 \right|\) có bao nhiêu điểm cực trị?
Từ một hộp đựng 5 quả cầu màu đỏ, 8 quả cầu màu xanh và 7 quả cầu màu trắng, chọn ngẫu nhiên 4 quả cầu. Tính xác suất để 4 quả cầu được chọn có đúng 2 quả cầu màu đỏ.
Cho hàm số \(y=a{{x}^{3}}+b{{x}^{2}}+cx+d\,\left( a\,,\,b\,,\,c\,,\,d\in \mathbb{R} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là
Đường cong hình bên là đồ thị của hàm số nào trong bốn hàm số ở phương án A, B, C, D dưới đây?
Tọa độ giao điểm của đồ thị hàm số \(y=\frac{2x-3}{1-x}\) với trục tung là
Cho hàm số y=f(x) liên tục trên đoạn \(\left[ -2;6 \right]\), có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của \(f\left( x \right)\) trên miền \(\left[ -2;6 \right]\). Tính giá trị của biểu thức T=2M+3m.
Cho \({{\log }_{5}}7=a\) và \({{\log }_{5}}4=b.\) Biểu diễn \({{\log }_{5}}560\) dưới dạng \({{\log }_{5}}560=m.a+n.b+p,\) với \(m,\,\,n,\,\,p\) là các số nguyên. Tính S=m+n.p.
Hàm số \(y=\frac{x+1}{x-1}\) nghịch biến trên khoảng nào dưới đây?
Cho hình hộp \(ABCD.{A}'{B}'{C}'{D}'\) có đáy ABCD là hình chữ nhật với AB=a, \(AD=a\sqrt{3}\). Hình chiếu vuông góc của \({A}'\) lên \(\left( ABCD \right)\) trùng với giao điểm của AC và BD. Khoảng cách từ \({B}'\) đến mặt phẳng \(\left( {A}'BD \right)\) là
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ bên dưới.
Hàm số \(y=f\left( x \right)\) đồng biến trên khoảng nào dưới đây?
Họ nguyên hàm của hàm số \(f\left( x \right)=\cos x\) là