Ông An có một mảnh vườn hình elip có độ dài trục lớn bằng 16m và độ dài trục bé bằng 10m. Ông muốn trồng hoa trên một dải đất rộng 8m và nhận trục bé của elip làm trục đối xứng (như hình vẽ). Biết kinh phí để trồng hoa là 100.000$ đồng/\(1\,{{m}^{2}}\). Hỏi ông An cần bao nhiêu tiền để trồng hoa trên dải đất đó? (Số tiền được làm tròn đến hàng nghìn).
A. 7.862.000 đồng
B. 7.653.000 đồng
C. 7.128.000 đồng
D. 7.826.000 đồng
Lời giải của giáo viên
Giả sử elip có phương trình \(\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\), với a>b>0.
Từ giả thiết ta có \(2a=16\Rightarrow a=8\) và \(2b=10\Rightarrow b=5\)
Vậy phương trình của elip là \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1 \Rightarrow \left[ \begin{array}{l} y = - \frac{5}{8}\sqrt {64 - {y^2}} \,\,\,\left( {{E_1}} \right)\\ y = \frac{5}{8}\sqrt {64 - {y^2}} \,{\rm{ }}\,\,\left( {{E_1}} \right) \end{array} \right.\)
Khi đó diện tích dải vườn được giới hạn bởi các đường \(\left( {{E}_{1}} \right);\,\,\left( {{E}_{2}} \right);\,\,x=-4;\,\,x=4\) và diện tích của dải vườn là \(S=2\int\limits_{-4}^{4}{\frac{5}{8}\sqrt{64-{{x}^{2}}}\text{d}x}=\frac{5}{2}\int\limits_{0}^{4}{\sqrt{64-{{x}^{2}}}\text{d}x}\)
Tính tích phân này bằng phép đổi biến x=8sin t, ta được \(S=80\left( \frac{\pi }{6}+\frac{\sqrt{3}}{4} \right)\)
Khi đó số tiền là \(T=80\left( \frac{\pi }{6}+\frac{\sqrt{3}}{4} \right).100000=7652891,82\simeq 7.653.000\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho a là số dương tuỳ ý, \(\sqrt[4]{{{a}^{3}}}\) bằng
Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l} {x^2} + 3\quad khi\;x \ge 1\\ 5 - x\quad \;\,khi\;x < 1 \end{array} \right.\). Tính \(I = 2\int\limits_0^{\frac{\pi }{2}} {f\left( {\sin x} \right)\cos xdx + 3\int\limits_0^1 {f\left( {3 - 2x} \right)} } dx\)
Họ nguyên hàm của hàm số \(f\left( x \right)={{\text{e}}^{x}}+\cos x\) là
Tìm tập nghiệm S của phương trình \({{{5}^{2{{x}^{2}}-x}}=5}\)
Cho hình chóp \(S.ABC\text{D}\) có đáy là hình vuông, \(AC=a\sqrt{2}\) . SA vuông góc với mặt phẳng \(\left( ABCD \right), SA=a\sqrt{3}\) (minh họa như hình bên). Góc giữa đường thẳng SB và mặt phẳng \(\left( ABCD \right)\) bằng
Cho hàm số \(y=f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên dưới đây
Hàm số \(y=f\left( x \right)\) có bao nhiêu điểm cực trị?
Trong không gian Oxyz, cho hai điểm \(A\left( -2;1;0 \right), B\left( 2;-1;2 \right)\). Phương trình của mặt cầu có đường kính AB là
Cho hai số phức \({{z}_{1}}=3+2i\) và \({{z}_{2}}=1-i\). Phần ảo của số phức \({{z}_{1}}-{{z}_{2}}\) bằng
Tính đạo hàm của hàm số \(y={{\log }_{5}}({{x}^{2}}+1).\)
Trong không gian Oxyz, cho hai điểm \(A\left( 3\,;1\,;-3 \right), B\left( 0\,;-2\,;3 \right)\) và mặt cầu \(\left( S \right):{{\left( x+1 \right)}^{2}}+{{y}^{2}}+{{\left( z-3 \right)}^{2}}=1\). Xét điểm M thay đổi thuộc mặt cầu \(\left( S \right)\), giá trị lớn nhất của \(M{{A}^{2}}+2M{{B}^{2}}\) bằng
Cho số phức z thỏa mãn: \(z\left( 2-i \right)+13i=1\). Tính mô đun của số phức z.
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( -2;0;0 \right)\) và vectơ \(\overrightarrow{n}\left( 0;1;1 \right)\). Phương trình mặt phẳng \(\left( \alpha \right)\) có vectơ pháp tuyến \(\overrightarrow{n}\) và đi qua điểm A là
Cho khối nón có bán kính đáy \(r=\sqrt{3}\) và chiều cao h=4. Tính thể tích V của khối nón đã cho.
Tìm phần ảo của số phức z thỏa mãn \(z+2\overline{z}={{\left( 2-i \right)}^{3}}\left( 1-i \right)\).
Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn \(\log _{3}^{{}}\left( x+y \right)=\log _{4}^{{}}\left( {{x}^{2}}+{{y}^{2}} \right)\)?