Phương trình nào sau đây không phải là phương trình mặt cầu ?
A. \({x^2} + {y^2} + {z^2} - 2x = 0.\)
B. \(2{x^2} + 2{y^2} = {\left( {x + y} \right)^2} - {z^2} + 2x - 1.\)
C. \({x^2} + {y^2} + {z^2} + 2x - 2y + 1 = 0.\)
D. \({\left( {x + y} \right)^2} = 2xy - {z^2} + 1 - 4x.\)
Lời giải của giáo viên
Phương trình mặt cầu \(\left( S \right)\) có hai dạng là :
(1) \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\);
(2) \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) với \({a^2} + {b^2} + {c^2} - d > 0\).
Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.
Ở các đáp án B, C, D đều thỏa mãn điều kiện phương trình mặt cầu. Tuy nhiên ở đáp án A thì phương trình: \(2{x^2} + 2{y^2} = {\left( {x + y} \right)^2} - {z^2} + 2x - 1\)
\(\Leftrightarrow {x^2} + {y^2} + {z^2} - 2xy - 2x + 1 = 0\) không đúng dạng phương trình mặt cầu.
Lựa chọn đáp án A.
CÂU HỎI CÙNG CHỦ ĐỀ
Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos x + {e^x}} \right)\,dx} \).
Cho số phức z thỏa mãn sau \(|z - 2 - 2i| = 1\). Số phức z - i có mô đun nhỏ nhất là:
Cho hàm số \(f(x) = {x^3} + a{x^2} + bx + c\). Mệnh đề nào sau đây sai ?
Nếu \(\int {f(x)\,dx = {e^x} + {{\sin }^2}x} + C\) thì f(x) bằng
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA = a. Tính thể tích V của khối chóp đã cho.
Cho số phức z = 2 + 3i. Giá trị của \(|2iz - \overline z |\) bằng :
Cho số phức z thỏa mãn \(|z + 3| + |z - 3| = 10\). Giá trị nhỏ nhất của \(|z|\) là:
Gọi M, N là giao điểm của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) và đường thẳng d: y = x + 2. Hoành độ trung điểm I của đoạn MN là
Hàm số \(y = \sqrt {{x^2} + 3x + 5} \). Tính y’(1) được :
Phương trình nào sau đây không phải là phương trình mặt cầu ?
Giả sử \(\int\limits_1^5 {\dfrac{{dx}}{{2x - 1}} = \ln K} \). Giá trị của K là:
Phương trình nào dưới đây là phương trình mặt cầu?