Lời giải của giáo viên
Xét hàm số \(f\left( x \right) = {50^x} + {2^{x + 5}} - {3.7^x}\)
Ta có
\(\begin{array}{l}
f'\left( x \right) = {50^x}\ln 50 + {32.2^x}\ln 2 - {3.7^x}\ln 7\\
f''\left( x \right) = {50^x}{\left( {\ln 50} \right)^2} + {32.2^x}{\left( {\ln 2} \right)^2} - {3.7^x}{\left( {\ln 7} \right)^2}
\end{array}\)
Vì \({\left( {\ln 50} \right)^2} > 3{\left( {\ln 7} \right)^2}\) nên \(f''\left( x \right)>0,\forall x \in R\), hay \(f](x)\) là hàm đồng biến. Mà \(\mathop {\lim }\limits_{x \to - \infty } f'\left( x \right) = 0\) nên \(f'\left( x \right)>0,\forall x \in R\). Suy ra \(f(x)\) là hàm đồng biến trên R, mà \(\mathop {\lim }\limits_{x \to - \infty } f'\left( x \right) = 0\) nên \(f\left( x \right)>0,\forall x \in R\)
Vậy phương trình đã cho vô nghiệm.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp đều S.ABC có độ dài cạnh đáy bằng 2, điểm M thuộc cạnh SA sao cho SA=4SM và SA vuông góc với mặt phẳng ABCD. Thể tích V của khối chóp S.ABC là
Cho hình chóp S.ABĐ có đáy ABCD là hình chữ nhật, \(AB = AD\sqrt 2 ,\,\,SA \bot \left( {ABC} \right)\). Gọi M là trung điểm của AB. Góc giữa hai mặt phẳng (SAC) và (SDM) bằng
Tìm giá trị lớn nhất của hàm số \(y = x - {e^{2x}}\) trên đoạn \(\left[ { - 1;1} \right]\).
Cho \(a = {\log _2}5\). Tính \({\log _4}1250\) theo \(a\).
Thể tích của khối chóp có diện tích đáy bằng 6 và chiều cao bằng 4 là
Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường tròn \((C_1)\) và \((C_2)\) lần lượt có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 1\) và \({\left( {x + 1} \right)^2} + {y^2} = 1\). Biết đồ thị hàm số \(y = \frac{{ax + b}}{{x + c}}\) đi qua tâm của \((C_1)\), đi qua tâm của \(( C_2)\) và có các đường tiệm cận tiếp xúc với cả \((C_1)\) và \((C_2)\). Tổng \(a+b+c\) là
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) \(\left( {a \ne 0} \right)\) có đồ thị như hình dưới đây.
Khẳng định nào dưới đây đúng?
Bất phương trình \({\log _3}\left( {{x^2} - 2x} \right) > 1\) có tập nghiệm là
Với \(a\) là số thực dương khác 1 tùy ý, \({\log _{{a^2}}}{a^3}\) bằng
Hàm số \(y = \frac{1}{3}{x^3} + {x^2} - 3x + 1\) đạt cực tiểu tại điểm
Tính thể tích \(V\) của khối chóp tứ giác đều \(S.ABCD\) mà \(SAC\) là tam giác đều cạnh \(a\).
Cho hàm số \(f\left( x \right) = \ln x - x\). Khẳng định nào dưới đây đúng?
Thể tích của khối nón tròn xoay có đường kính đáy bằng 6 và chiều cao bằng 5 là
Cho \(a\) và \(b\) lần lượt là số hạng thứ hai và thứ mười của một cấp số cộng có công sai \(d \ne 0.\) Giá trị của biểu thức \({\log _2}\left( {\frac{{b - a}}{d}} \right)\) là một số nguyên có số ước tự nhiên bằng