Câu hỏi Đáp án 2 năm trước 34

Tập nghiệm của bất phương trình \({\log _2}\left( {x\sqrt {{x^2} + 2}  + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2}  \le 1\) là \(\left( { - \sqrt a ; - \sqrt b } \right].\) Khi đó ab bằng

A. \(\frac{{12}}{5}\)

B. \(\frac{{5}}{12}\)

C. \(\frac{{15}}{{16}}\)

D. \(\frac{{16}}{{15}}\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Điều kiện: \(x\sqrt {{x^2} + 2}  + 4 - {x^2} > 0 \Leftrightarrow x\left( {\sqrt {{x^2} + 2}  - x} \right) + 4 > 0 \Leftrightarrow x.\frac{2}{{\sqrt {{x^2} + 2}  + x}} + 4 > 0\) 

\(\begin{array}{*{20}{l}}
{ \Leftrightarrow \frac{{2x}}{{\sqrt {{x^2} + 2}  + x}} + \frac{{4\left( {\sqrt {{x^2} + 2}  + x} \right)}}{{\sqrt {{x^2} + 2}  + x}} > 0 \Rightarrow 6x + 4\sqrt {{x^2} + 2}  > 0\left( {do{\mkern 1mu} {\mkern 1mu} \sqrt {{x^2} + 2}  > x;\forall x \Leftrightarrow 2\sqrt {{x^2} + 2}  >  - 3x \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{ - 3x < 0}\\
{\left\{ {\begin{array}{*{20}{l}}
{ - 3x \ge 0}\\
{4\left( {{x^2} + 2} \right) > {{\left( { - 3x} \right)}^2}}
\end{array}} \right.}
\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x > 0}\\
{\left\{ {\begin{array}{*{20}{l}}
{x \le 0}\\
{5{x^2} < 8}
\end{array}} \right.}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{x > 0}\\
{ - \frac{{\sqrt {40} }}{5} < x \le 0}
\end{array}} \right.} \right)}
\end{array}\)

Khi đó ta có \({\log _2}\left( {x\sqrt {{x^2} + 2}  + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2}  \le 1\) 

\(\begin{array}{l}
 \Leftrightarrow {\log _2}\left( {x\left( {\sqrt {{x^2} + 2}  - x} \right) + 4} \right) + 2x + \sqrt {{x^2} + 2}  \le 1\\
 \Leftrightarrow {\log _2}\left( {\frac{{2x}}{{\sqrt {{x^2} + 2}  + x}} + 4} \right) + 2x + \sqrt {{x^2} + 2}  \le 1\\
 \Leftrightarrow {\log _2}\left( {\frac{{6x + 4\sqrt {{x^2} + 2} }}{{\sqrt {{x^2} + 2}  + x}}} \right) + 2x + \sqrt {{x^2} + 2}  \le 1\\
{\log _2}\left( {6 + 4\sqrt {{x^2} + 2} } \right) - {\log _2}\left( {\sqrt {{x^2} + 2}  + x} \right) + 2x + \sqrt {{x^2} + 2}  \le 1\\
 \Leftrightarrow {\log _2}\left[ {2\left( {3x + 2\sqrt {{x^2} + 2} } \right)} \right] - {\log _2}\left( {\sqrt {{x^2} + 2}  + x} \right) + 2x + \sqrt {{x^2} + 2}  \le 1\\
 \Leftrightarrow {\log _2}2 + {\log _2}\left( {3x + 2\sqrt {{x^2} + 2} } \right) - {\log _2}\left( {\sqrt {{x^2} + 2}  + x} \right) + 2x + \sqrt {{x^2} + 2}  \le 1\\
 \Leftrightarrow 1 + {\log _2}\left( {3x + 2\sqrt {{x^2} + 2} } \right) - {\log _2}\left( {\sqrt {{x^2} + 2}  + x} \right) + 2x + \sqrt {{x^2} + 2}  \le 1\\
 \Leftrightarrow {\log _2}\left( {3x + 2\sqrt {{x^2} + 2} } \right) + 3x + 2\sqrt {{x^2} + 2}  \le {\log _2}\left( {\sqrt {{x^2} + 2}  + x} \right) + x + \sqrt {{x^2} + 2} 
\end{array}(*)\)

Xét hàm số \(f\left( t \right) = t + {\log _2}t\) với t > 0 ta có $f'\left( t \right) = 1 + \frac{1}{{t.\ln 2}} > 0;\forall t > 0\) nên \(f(t)\) là hàm đồng biến trên $\left( {0; + \infty } \right)\) 

Từ đó

\(\begin{array}{l}
\left( * \right) \Leftrightarrow f\left( {3x + 2\sqrt {{x^2} + 2} } \right) \le f\left( {\sqrt {{x^2} + 2}  + x} \right)\\
 \Leftrightarrow 3x + 2\sqrt {{x^2} + 2}  \le \sqrt {{x^2} + 2}  + x\\
 \Leftrightarrow \sqrt {{x^2} + 2}  \le  - 2x\\
 \Leftrightarrow \left\{ \begin{array}{l}
 - 2x \ge 0\\
{x^2} + 2 \le 4{x^2}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \le 0\\
3{x^2} \ge 2
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \le 0\\
\left[ \begin{array}{l}
x \ge \frac{{\sqrt 6 }}{3}\\
x \le  - \frac{{\sqrt 6 }}{3}
\end{array} \right.
\end{array} \right. \Leftrightarrow x \le  - \frac{{\sqrt 6 }}{3}
\end{array}\) 

Kết hợp điều kiện \(\left[ \begin{array}{l}
x > 0\\
 - \frac{{\sqrt {40} }}{5} < x \le 0
\end{array} \right.\) ta có \( - \frac{{\sqrt {40} }}{5} < x \le  - \frac{{\sqrt 6 }}{3}\) hay \( - \sqrt {\frac{8}{5}}  < x \le  - \sqrt {\frac{2}{3}} \) 

Tập nghiệm bất phương trình \(S = \left( { - \sqrt {\frac{8}{5}} ; - \sqrt {\frac{2}{3}} } \right]\) nên \(a = \frac{8}{5};b = \frac{2}{3} \to a.b = \frac{8}{5}.\frac{2}{3} = \frac{{16}}{{15}}.\) 

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Phương trình \({7^{2{x^2} + 6x + 4}} = 49\) có tổng tất cả các nghiệm bằng

Xem lời giải » 2 năm trước 45
Câu 2: Trắc nghiệm

Cho hàm số \(f(x)\) liên tục trên R và có đồ thị như hình vẽ. Mệnh đề nào sau đây SAI?

Xem lời giải » 2 năm trước 43
Câu 3: Trắc nghiệm

Cho hai số thực x, y thỏa mãn \({x^2} + {y^2} - 4x + 6y + 4 + \sqrt {{y^2} + 6y + 10}  = \sqrt {6 + 4x - {x^2}} .\) Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(T = \left| {\sqrt {{x^2} + {y^2}}  - a} \right|.\) Có bao nhiêu giá trị nguyên thuộc đoạn [-10;10] của tham số a để \(M \ge 2m?\) 

Xem lời giải » 2 năm trước 43
Câu 4: Trắc nghiệm

Họ nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{5x + 4}}\) là

Xem lời giải » 2 năm trước 43
Câu 5: Trắc nghiệm

Cho phương trình \(m{\ln ^2}\left( {x + 1} \right) - \left( {x + 2 - m} \right)\ln \left( {x + 1} \right) - x - 2 = 0\,\,(1).\) Tập tất cả giá trị của tham số m để phương trình 1 có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn \(0 < {x_1} < 2 < 4 < {x_2}\) là khoảng \(\left( {a; + \infty } \right).\) Khi đó, \(a\) thuộc khoảng

Xem lời giải » 2 năm trước 42
Câu 6: Trắc nghiệm

Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD); tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC; \(AD = 3BC = 3a;AB = a,SA = a\sqrt 3 .\) Điểm I thỏa mãn \(\overrightarrow {AD}  = 3\overrightarrow {AI} ;\) M là trung điểm SD, H là giao điểm của AM và SI . Gọi E , F lần lượt là hình chiếu của A lên SB, SC. Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD).

Xem lời giải » 2 năm trước 42
Câu 7: Trắc nghiệm

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A, \(AB = a\sqrt 3 ,\) BC = 2a, đường thẳng AC' tạo với mặt phẳng BCC'B' một góc \(30^0\) Diện tích của mặt cầu ngoại tiếp hình lăng trụ đã cho bằng

Xem lời giải » 2 năm trước 41
Câu 8: Trắc nghiệm

Cho tập A có 26 phần tử. Hỏi A có bao nhiêu tập con gồm 6 phần tử?

Xem lời giải » 2 năm trước 41
Câu 9: Trắc nghiệm

Gieo một con súc sắc cân đối và đồng chất, xác suất để mặt có số chấm chẵn xuất hiện là

Xem lời giải » 2 năm trước 41
Câu 10: Trắc nghiệm

Cho a > 0, b > 0, giá trị của biểu thức \(T = 2{\left( {a + b} \right)^{ - 1}}.{\left( {ab} \right)^{\frac{1}{2}}}.{\left[ {1 + \frac{1}{4}\left( {\sqrt {\frac{a}{b}}  - \sqrt {\frac{b}{a}} } \right){}^2} \right]^{\frac{1}{2}}}\) bằng

Xem lời giải » 2 năm trước 41
Câu 11: Trắc nghiệm

Cho khối nón có bán kính đáy \(r = \sqrt 3 \) và chiều cao h = 4. Tính thể tích V của khối nón đã cho.

Xem lời giải » 2 năm trước 41
Câu 12: Trắc nghiệm

Cho hàm số \(y = \frac{{x - 3}}{{{x^3} - 3m{x^2} + \left( {2{m^2} + 1} \right)x - m}}.\) Có bao nhiêu giá trị nguyên thuộc đoạn [-6;6] của tham số m để đồ thị hàm số có bốn đường tiệm cận?

Xem lời giải » 2 năm trước 41
Câu 13: Trắc nghiệm

Cho hình chóp đều .S ABCD có cạnh AB = a, góc giữa đường thẳng SA và mặt phẳng ABC bằng \(45^0\). Thể tích khối chóp S.ABCD là

Xem lời giải » 2 năm trước 41
Câu 14: Trắc nghiệm

Cho hàm số \(y = {x^4} - 2{x^2} + m - 2\) có đồ thị C. Gọi S là tập các giá trị của m sao cho đồ thị C có đúng một tiếp tuyến song song với trục Ox. Tổng tất cả các phần tử của S là 

Xem lời giải » 2 năm trước 41
Câu 15: Trắc nghiệm

Cho hình chóp S.ABC có ba cạnh OA, OB, OC đôi một vuông góc và OA = OB = OC = a. Gọi M là trung điểm cạnh AB . Góc hợp bởi hai véc tơ \(\overrightarrow {BC} \) và \(\overrightarrow {OM} \) bằng

Xem lời giải » 2 năm trước 40

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »