Câu hỏi Đáp án 2 năm trước 35

Tích các nghiệm thực của phương trình \(\log _2^2x + \sqrt {3 - {{\log }_2}x}  = 3\) bằng  

A. \({2^{\dfrac{{ - 3 + \sqrt {13} }}{2}}}.\)            

Đáp án chính xác ✅

B. \({2^{\dfrac{{ - 1 + \sqrt {13} }}{2}}}.\)   

C. \({2^{\dfrac{{ - 3 - \sqrt {13} }}{2}}}.\)      

D. \({5.2^{\dfrac{{ - 1 - \sqrt {13} }}{2}}}.\) 

Lời giải của giáo viên

verified HocOn247.com

ĐK: \(\left\{ \begin{array}{l}x > 0\\3 - {\log _2}x \ge 0\end{array} \right. \Rightarrow 0 < x \le 8\)

Đặt \(\sqrt {3 - {{\log }_2}x}  = t\left( {t \ge 0} \right)\) \( \Rightarrow {t^2} = 3 - {\log _2}x \Leftrightarrow {t^2} + {\log _2}x = 3\,\,\left( 1 \right)\)

Thay \(\sqrt {3 - {{\log }_2}x}  = t\) vào phương trình đã cho ta được \(\log _2^2x + t = 3\,\,\left( 2 \right)\)

Từ (1) và (2) suy ra \({t^2} + {\log _2}x - \log _2^2x - t = 0 \Leftrightarrow \left( {t - {{\log }_2}x} \right)\left( {t + {{\log }_2}x} \right) - \left( {t - {{\log }_2}x} \right) = 0\)

\( \Leftrightarrow \left( {t - {{\log }_2}x} \right)\left( {t + {{\log }_2}x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = {\log _2}x\\t = 1 - {\log _2}x\end{array} \right.\)

+ Với \(t = {\log _2}x \Leftrightarrow \sqrt {3 - {{\log }_2}x}  = {\log _2}x \Leftrightarrow \left\{ \begin{array}{l}{\log _2}x \ge 0\\\log _2^2x + {\log _2}x - 3 = 0\end{array} \right.\)

\( \Rightarrow {\log _2}x = \dfrac{{ - 1 + \sqrt {13} }}{2}\) \( \Rightarrow x = {2^{\dfrac{{\sqrt {13}  - 1}}{2}}}\left( {TM} \right)\)

+ Với \(t = 1 - {\log _2}x \Leftrightarrow \sqrt {3 - {{\log }_2}x}  = 1 - {\log _2}x \Leftrightarrow \left\{ \begin{array}{l}{\log _2}x \le 1\\\log _2^2x - {\log _2}x - 2 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{\log _2}x \ge  - 1\\\left[ \begin{array}{l}{\log _2}x = 2\,\,\left( {ktm} \right)\\{\log _2}x =  - 1\,\,\left( {tm} \right)\end{array} \right.\end{array} \right. \Rightarrow x = {2^{ - 1}}\,\,\left( {tm} \right)\)

Vậy phương trình đã cho có hai nghiệm \(x = {2^{\dfrac{{\sqrt {13}  - 1}}{2}}};\,\,x = {2^{ - 1}}\)  nên tích các nghiệm là \({2^{\dfrac{{\sqrt {13}  - 1}}{2}}}{.2^{ - 1}} = {2^{\dfrac{{\sqrt {13}  - 1}}{2} - 1}} = {2^{\dfrac{{\sqrt {13}  - 3}}{2}}}\)

Chọn A.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho \({\log _2}b = 4,\,\;{\log _2}c =  - 4;\) khi đó \({\log _2}({b^2}c)\) bằng 

Xem lời giải » 2 năm trước 44
Câu 2: Trắc nghiệm

Mặt phẳng \(\left( P \right):2x - y + 3z - 1 = 0\) có một vectơ pháp tuyến là 

Xem lời giải » 2 năm trước 40
Câu 3: Trắc nghiệm

Cho hàm số \(f(x)\) thỏa mãn \(f\left( x \right) + 2\sqrt x f'\left( x \right) = 3x{e^{ - \sqrt x }},\forall x \in \left[ {0; + \infty } \right).\) Giá trị \(f(1)\) bằng 

Xem lời giải » 2 năm trước 39
Câu 4: Trắc nghiệm

Trong không gian\(Oxyz,\) cho \(\vec u = 3\vec i - 2\vec j + 2\vec k\). Tọa độ của \(\vec u\) là  

Xem lời giải » 2 năm trước 39
Câu 5: Trắc nghiệm

Cho hai điểm \(A( - 1;0;1),B( - 2;1;1).\) Phương trình mặt phẳng trung trực của đoạn \(AB\) là 

Xem lời giải » 2 năm trước 37
Câu 6: Trắc nghiệm

Cho hàm số \(y = {\log _a}x,\,\,\,0 < a \ne 1\). Khẳng định nào sau đây đúng? 

Xem lời giải » 2 năm trước 37
Câu 7: Trắc nghiệm

Tập xác định của hàm số \(y = {\left( {{3^x} - 9} \right)^{ - 2}}\) là 

Xem lời giải » 2 năm trước 37
Câu 8: Trắc nghiệm

Với \(k\) và \(n\) là hai số nguyên dương tùy ý thỏa mãn \(k \le n\). Mệnh đề nào dưới đây đúng? 

Xem lời giải » 2 năm trước 37
Câu 9: Trắc nghiệm

Giả sử \(a,b\) là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\) đúng với mọi các số thực dương \(x,y,z\) thoả mãn \(\log \left( {x + y} \right) = z\) và \(\log \left( {{x^2} + {y^2}} \right) = z + 1.\) Giá trị của \(a + b\) bằng 

Xem lời giải » 2 năm trước 36
Câu 10: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\) như hình vẽ. Số giao điểm của \(\left( C \right)\) và đường thẳng \(y = 3\) là:

Xem lời giải » 2 năm trước 35
Câu 11: Trắc nghiệm

Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có cạnh đáy bằng \(2a,\) \(O\) là trọng tâm tam giác \(ABC\) và \(A'O = \dfrac{{2a\sqrt 6 }}{3}.\) Thể tích của khối lăng trụ \(ABC.A'B'C'\) bằng  

Xem lời giải » 2 năm trước 35
Câu 12: Trắc nghiệm

Cho hình nón đỉnh \(S\) có bán kính đáy bằng \(a\sqrt 2 .\) Mặt phẳng \(\left( P \right)\) qua \(S\) cắt  đường tròn đáy tại \(A,B\) sao cho \(AB = 2a.\) Biết rằng khoảng cách từ tâm đường tròn đáy đến mặt phẳng \(\left( P \right)\) là \(\dfrac{{4a\sqrt {17} }}{{17}}.\) Thể tích khối nón bằng  

Xem lời giải » 2 năm trước 35
Câu 13: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Tổng giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g\left( x \right) = f\left( {2\sin \,\dfrac{x}{2}\cos \dfrac{x}{2} + 3} \right)\) bằng

Xem lời giải » 2 năm trước 35
Câu 14: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên \({\rm{[}}1;2{\rm{]}}.\) Quay hình phẳng \(\left( H \right) = \left\{ {y = f(x),y = 0,x = 1,x = 2} \right\}\) xung quanh trục \(Ox\) được khối tròn xoay có thể tích 

Xem lời giải » 2 năm trước 35
Câu 15: Trắc nghiệm

Cho hàm số \(y = f(x)\) có bảng biến thiên trên đoạn \(\left[ { - 1;5} \right]\) như hình vẽ. Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(f\left( {3\sin x + 2} \right) = m\) có đúng 3 nghiệm phân biệt trên khoảng \(\left( { - \dfrac{\pi }{2};\pi } \right)\)? 

Xem lời giải » 2 năm trước 35

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »